Design Method for Valve-Controlled Hydraulic Positioning Systems

Prof. Victor Juliano De Negri, D. Eng.

Federal University of Santa Catarina Department of Mechanical Engineering LASHIP - Laboratory of Hydraulic and Pneumatic Systems

May, 2023

- I. Electro-Hydraulic Positioning Systems
- 2. Design Methodology of Technical Systems
- 3. Design Method for Hydraulic Positioning Systems
 - 3.1. Step 1: System and Actuator Characterization
 - 3.2. Step 2: Valve Characterization
 - 3.3. Step 3: Dynamic Modelling and Simulation
- 4. Example and Complementary Analysis:
 - 4.1. Influence of the Valve Flow Coefficient
 - 4.2. Maximum Acceleration
 - 4.3. Correlation between Natural Frequencies
 - 4.4. Results from the Design Method
- 5. Acknowledgement

- Electro-hydraulic positioning systems (EHPS):
 - For driving and controlling high loads with reliability, speed, and accuracy
- Main components:
 - Electrically modulated hydraulic control valve
 - Servovalves, Proportional valves
 - Cylinder
 - Controller

- Control valves:
 - Pressure dependence of the valve flow rate
 - Dead zone

• Variable dynamic behavior

Operating limits

٠

- Cylinder + load
 - Non-linear friction

• Dynamic behavior function of the cylinder position

System configurations:

• Symmetrical cylinder + symmetrical valve

- Asymmetrical cylinder + asymmetrical valve
 - It is also usual: Asymmetrical cylinder + symmetrical valve

System configurations:

• Asymmetrical cylinder (single effect) + 3 port valve.

- Design Methodology for Mechatronic Systems:
 - Four classical phases according to design methology for technical systems as in Pahl et al., 2007¹
 - Tasks, steps, and activities developted for mechatronic systems as in De Negri et al., 2021²

¹ Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. *Engineering design: a systematic approach* (3 ed.). London: Springer Science & Business Media, 2007.
² De Negri, V. J.; Muñoz Salas, K.; Vigolo, V. Design methodology for mechatronic systems: An approach using function/means tree and channel/agency net. E-book. Florianopolis: Universidade Federal de Santa Catarina, 2021.

Design Method for Valve-Controlled Hydraulic Positioning Systems

This design method is implemented in the HyPS Tool software available at laship.ufsc.br

LOAD PRESSURE @ MAXIMUM POWER

4 Ports Sym $\Rightarrow p_{L_Pmax} = 2/3P_s$ 4 Ports Asym $\Rightarrow p_{L_Pmax} = 4/3P_s$ (Extend) 3 Ports Asym $\Rightarrow p_{L_Pmax} = 1/3P_s$ 4 Ports Asym $\Rightarrow p_{L_Pmax} = 1/3P_s$ (Retract)

Sizing Method for Valve-Controlled Hydraulic Positioning Systems – Victor J. De Negri

For $r_A = 0.5$

 $\frac{dP}{dp_L}=0$

P at x_n

1

0

 $p_L = p_S$

 $\frac{p_L}{p_S}$

 Δp_t

p_s

22 of 23

23 of 23

- Proportional Hydraulic Platform (PHP)
 - Hydraulic power unit
 - Two workstations
 - Data acquisition and control system

Workstation:

- Loading system
 - Forces up to 3900 N
- Symmetrical and asymmetrical valves
- Differential and non-differential cylinders

Flow Coefficient (Kv)		Relative to selected value	
L/min.bar ^{1/2}	×10 ⁻⁷ m ³ /s.Pa ^{1/2}	%	
1.13	0.60	~ 40	
1 43	0.76	~ 50	
2.48	1.31	Specified value	
5.38	2.84	~ 200	

Results (M = 76.5 kg):

- Kv < 1.24 L/min.bar1/2 (50%)
 - Higher controller gains are required
 - Larger periods of valve saturation
 - Tendency of instability
- Kv > 4.96 L/min.bar1/2 (200%)
 - Smaller proportional gains
 - No valve saturation
 - Larger valves do not exhibit performance improvement
 - Slower and more expensive valve

- Maximum positive acceleration = Maximum acceleration
 - Occurs at t = 0 s

 $a_{\max_p} = x_d \omega_n^2$

- Maximum negative acceleration:
 - Occurs at the end of motion

$$a_{\max n} = -x_d \omega_n^2 e^{-2}$$

- Using negative acceleration:
 - Smaller cylinder can be used

or

•

• Higher mass can be moved

Acceleration	Mass			
106.5 m/s²	10 kg			
-14.4 m/s²	76.5 kg			
Hydraulic force = 1100 N				
$A^C \cdot p_L = M_t \cdot a_{\max}^C$				

- Valve Natural Frequency x Positioning System Natural Frequency:
 - Experimental system:
 - Valve natural frequency = 440 rad/s (70 Hz)
 - System natural frequency = 46.15 rad/s (7.3 Hz)
 - Without load mass and coupled spring:
 - Ensure a high cylinder+load natural frequency

$$\omega_{n_V} \approx 9.5 \omega_{n_S}$$

 $\omega_{n c} > 5 \omega_{n S}$

- Cylinder Natural Frequency x Positioning System Natural Frequency:
 - Cylinder natural frequency = 220 rad/s (35 Hz)
 - System natural frequency = 46.15 rad/s (7.3 Hz)
 - Changing fluid volumes: $\omega_{n_c} = 2 \omega_{n_s}$ $\omega_{n_c} = 3 \omega_{n_s}$

 $\omega_{n_{-}C} \approx 5 \omega_{n_{-}S}$

Results from the Design Method

Design Method for Valve-Controlled Hydraulic Positioning Systems

This method originated from the thesis by **Fernando L. Furst** (2001) and was updated based on the later contributions of other graduate students: **Alisson D. C. de Souza** (2005), **José R. B. Ramos Filho** (2007), **Rodrigo Szpak** (2008), **Irving Muraro** (2009) and **Mario Destro** (2015).

Theses:

- DESTRO, Mário Cesar. Análise de condições operacionais críticas em posicionadores eletro-hidráulicos. 2014. Master's Thesis. Universidade Federal de Santa Catarina.
- FUST, Fernando Luiz Sistematização do projeto preliminar de circuitos hidráulicos de controle de posição. Florianópolis, 2001. Master's Thesis. Universidade Federal de Santa Catarina.
- MURARO, Irving. Estudo das Características Comportamentais de Válvulas Proporcionais e seus Efeitos nos Posicionadores Eletro-Hidráulicos. 2009. Master's Thesis. Universidade Federal de Santa Catarina.
- RAMOS FILHO, José Roberto Branco. Análise Teórico-Experimental de Falhas em Válvulas Direcionais Servoproporcionais. 2009 Master's Thesis Universidade Federal de Santa Catarina.
- SOUZA, Alisson D Correa de. Desenvolvimento de Sistema de Projeto e Controle de Posicionadores Hidráulicos. 2005. Master's Thesis Universidade Federal de Santa Catarina.
- SZPAK, Rodrigo. Análise teorico-experimental do comportamento das pressões em posicionadores hidráulicos. 2008. Master's Thesis Universidade Federal de Santa Catarina.

Design Method for Valve-Controlled Hydraulic Positioning Systems Publications:

- DESTRO, MÁRIO C.; DE NEGRI, VICTOR J. Method for combining valves with symmetric and asymmetric cylinders for hydraulic systems. INTERNATIONAL JOURNAL OF FLUID POWER. v.19, p.1 - 14, 2018. DOI: 10.1080/14399776.2018.1483164
- DESTRO, M. C., BRAVO, Rafael Rivelino da Silva, DE NEGRI, V. J. Comparative analysis of electro-hydraulic positioning systems under variable load conditions. In: 22nd International Congress of Mechanical Engineering (COBEM 2013), 2013, Ribeirão Preto. p.1663 – 1673. Furst,
- MURARO, I., TEIXEIRA, P. L., DE NEGRI, V. J. Effect of proportional valves and cylinders on the behavior of hydraulic positioning systems. In: ASME/BATH 2013 Symposium on Fluid Power & Motion Control, 2013, Sarasota, FL., p.1 – 9. DOI:10.1115/FPMC2013-4496.
- MURARO, I., DE NEGRI, V. J., BELAN, H. C., RAMOS FILHO, J. R. B. Parameter influence on the design of hydraulic positioning systems In: 21st International Congress of Mechanical Engineering, 2011, Natal. RN. ABCM, 2011.
- SZPAK, R., RAMOS FILHO, J. R. B., DE NEGRI, V. J. Theoretical and experimental study of the matching between proportional valves and symmetric and asymmetric cylinders In: 7th International Fluid Power Conference 7 IFK, 2010, Aachen-Germany. v.2. p.155 166.
- SZPAK, R., RAMOS FILHO, J. R.B., BELAN, H. C., DE NEGRI, V. J. Theoretical and Experimental al Study of the Pressure Behavior on Hydraulic Positioning Systems In: Cobem 2009, 2009, Gramado. ABCM, 2009.
- DE NEGRI. V., J., R. FILHO. J., R. B., SOUZA. A., D., C. A Design Method for Hydraulic Positioning Systems. 51th National Conference on Fluid Power (NCFP), in conjunction with IFPE 2008, p. 669-679, 2008, Las Vegas, USA.

Desing Method for Valve-Controlled Hydraulic Positioning Systems

Federal University of Santa Catarina Department of Mechanical Engineering Laboratory of Hydraulic and Pneumatic Systems Victor J. De Negri victor.de.negri@ufsc.br laship.ufsc.br

