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Abstract 

High energy efficiency is a key requirement for modern construction ma-
chinery. This is because of stricter environmental targets, electrification, 
and reduction of operation costs. To meet this requirement, the power-
train architectures of the machines are becoming increasingly complex, 
for example through hybridisation of drivetrain and work functions, or 
with improved hydraulic systems. However, the more complex the archi-
tecture is, the harder the management of splitting power between differ-
ent sources and consumers. The number of work functions, operating 
environments, and tasks these machines engage in, along with the added 
degrees of freedom with respect to how energy can be recovered, ex-
changed, and reused, makes them unique. Therefore, the development 
of control strategies for energy management in such machines requires 
specific research and development with their architecture and applica-
tion in focus. This doctoral thesis presents an analysis of two methods 
for the development of machine learning-based energy management 
strategies for construction machines. One is based on supervised learn-
ing and the other on reinforcement learning. The methods use optimisa-
tion to find optimised solutions for the control problem of the systems 
and machine learning for learning and implementing the control deci-
sions. In both methods, models of the physical systems are used for the 
learning and training. The thesis highlights and confirms, with experi-
mental results, the potential of such methods to derive control strategies 
for these machines. The studied methods can learn and implement im-
proved control decisions in the real systems that result in the potential 
for increased efficiency. At the same time, their robustness is shown in 
the application to unseen scenarios during training, although that does 
not eliminate the need for further training in the real systems after de-
ployment. The thesis also increases the comprehensiveness on energy 
management for construction machines. The thesis was completed in a 
double-degree format between the Federal University of Santa Catarina, 
Florianópolis, Brazil, and Linköping University, Linköping, Sweden. 
 
Keywords: Machine Learning, Energy Management, Construction Ma-
chines 
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Populärvetenskaplig 
sammanfattning 

Hög effektivitet är ett nyckelkrav för moderna byggmaskiner. Detta på 
grund av strängare miljömål, elektrifiering och sänkta driftskostnader. 
För att möta detta krav blir maskinernas arkitektur mer komplex, till ex-
empel genom hybridisering av drivlina och arbetsfunktioner. Men ju mer 
komplex arkitekturen är desto svårare blir hanteringen av maktdelning 
mellan olika källor och konsumenter. Antalet arbetsfunktioner, drifts-
miljö och uppgifter de engagerar tillsammans med de ökade frihetsgra-
derna med avseende på hur kraft kan återvinnas, bytas ut och återanvän-
das, gör dem unika. Därför kräver utvecklingen av styrstrategier specifik 
utveckling med deras arkitektur och tillämpning i fokus. Denna doktors-
avhandling presenterar en analys av två metoder för utveckling av opti-
merade och intelligenta energihanteringsstrategier i realtid för delsy-
stem av komplexa entreprenadmaskiner. De utvärderade metoderna an-
vänder optimering för att hitta optimala lösningar för systemens kon-
trollproblem, och använder maskininlärning som ett sätt att lära sig och 
implementera de optimerade besluten. I båda metoderna används mo-
deller för lärandet och träningen. Avhandlingen belyser och bekräftar ex-
perimentellt potentialen hos sådana metoder för att härleda kontroll-
strategier för dessa maskiner. De studerade metoderna kan lära sig och 
implementera optimerade styrbeslut i de verkliga systemen vilket leder 
till ökad effektivitet. Samtidigt visar det sig att de är robusta mot osynliga 
scenarier under träning, även om det inte eliminerar behovet av vidare-
utbildning i de verkliga systemen efter utplacering. Examensarbetet ökar 
också heltäckningen om energihantering för entreprenadmaskiner. Av-
handlingen har utvecklats i ett dubbelgradersformat med Federal Uni-
versity of Santa Catarina, Florianópolis, Brasilien och Linköpings Uni-
versitet, Linköping, Sverige. 
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Resumo 

Alta eficiência energética é um requisito para máquinas de construção 
modernas, sendo este uma consequência das metas ambientais, 
eletrificação e redução de custos. Para atender este requisito as 
arquiteturas dos trens de potência das máquinas têm se tornado mais 
complexas, por exemplo, através da hibridização do sistema de tração e 
funções de trabalho, ou  sistemas hidráulicos melhorados. Entretanto, 
quanto mais complexa a arquitetura, mais difícil se torna o 
gerenciamento da divisão de potência entre as fontes e consumidores. O 
número de funções de trabalho, ambientes de operação e tarefas que elas 
executam, juntamente com os graus de liberdade relacionados à como  
energia pode ser recuperada, trocada e reutilizada, às tornam únicas. 
Dessa maneira, o desenvolvimento de estratégias de controle requer 
pesquisa e desenvolvimento específicos com as suas arquiteturas e 
aplicações em foco. Esta tese de doutorado apresenta uma análise de dois 
métodos para o desenvolvimento de estratégias baseadas em 
aprendizado de máquina para o gerenciamento de energia em máquinas 
de construção. Um é baseado em aprendizado supervisionado e outro em 
aprendizado por reforço. Os métodos avaliados usam otimização para 
encontrar soluções otimizadas para o problema de controle dos sistemas, 
e usam aprendizado de máquina como meio para aprender e 
implementar as decisões de controle. Em ambos os métodos, modelos 
dos sistemas físicos são utilizados para o aprendizado e treinamento. A 
tese destaca e confirma através de resultados experimentais, o potencial 
destes métodos em obter estratégias de controle para estas máquinas. Os 
métodos estudados são capazes de aprender e implementar decisões de 
controle melhores nos sistemas reais resultando em potencial aumento 
de eficiência energética. Ao mesmo tempo, é mostrado a sua robustez na 
prática a cenários não vistos durante o treinamento, apesar de isso não 
eliminar a necessidade de continuar o treinamento depois de 
implementadas no sistema real. A tese também aumenta a compressão 
sobre gerenciamento de energia em máquinas de construção. A tese foi 
desenvolvida em formato de cotutela com a Universidade Federal de 
Santa Catarina, Florianópolis, Brasil, e a Universidade de Linköping, 
Linköping, Suécia. 

Palavras-Chave: Aprendizado de Máquina, Gerenciamento de 
Energia, Máquinas de Construção 



 

vi 

  



 

 vii 

 

Resumo Expandido 

Introdução 

Esta tese aborda métodos para a obtenção de estratégias de 
genrenciamento de energia baseadas em aprendizado de máquina para 
máquinas de construção. 

O movimento global para atender metas para conter alterações 
climáticas impulssiona o desenvolvimento de sistemas mais eficientes. 
Isso também é válido para máquinas de construção. 

Máquinas de construção como escavadeiras, carregadeiras de rodas e 
caminhões articulados são caracterizadas por um trem de potência não 
apenas dedicado ao movimento translacional mas também às funções de 
trabalho responsáveis por mover cargas pesadas. Sendo assim, para este 
tipo de máquina, o desenvolvimento de novos sistemas visando o 
aumento de eficiência, também envolve subsistemas que permitem a 
recuperação de energia cinética e potencial, ou que permitem modos de 
operação mais eficientes que os sistemas atuais. 

Máquinas com a capacidade de recuperar, armazenar e reutilizar 
essas energias disponíveis têm graus de liberdade adicionais que, 
também precisam ser controlados, sendo estes controladores chamados 
de estratégias de gerenciamento de energia. Eles definem quando, onde 
e como a energia é gerada, recuperada, armazenada e reutilizada. Eles 
gerenciam o compartilhamento de energia entre múltiplas fontes e 
consumidores. É preciso ter uma visão holística da máquina, dos 
subsistemas e das tarefas de trabalho para otimizar esse gerenciamento 
de energia. O ganho em eficiência é, então, consequência da arquitetura 
da máquina e da estratégia de gerenciamento de energia. 

Máquinas de construção com sistemas que permitem a recuperação 
de energia ou que possuam sistemas hidráulicos mais complexos que 
necessitem de gerenciamento de energia, têm uma maior capacidade de 
aumento de eficiência, mas ao mesmo tempo são mais desafiadoras sob 
o ponto de vista de desenvolvimento de estratégias de gerenciamento de 
energia. Por limitações relacionadas à sub-optimização, requisitos de 
computação, facilidade de implementação e adaptabilidade a novos 
cenários de operação, métodos já existentes para o desenvolvimento de 
estratégias de gerenciamento de energia aparentemente não atendem os 
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requisitos de máquinas de construção. E em sua maiora, eles têm sido 
avaliados para veículos de rua e não para máquinas de construção. 

Por outro lado, há indicativos de que o aprendizado de máquina possa 
atender aos requisitos e desafios relacionados à esse tipo máquina. 
Entretando, não existe grande quantidade de estudos demonstrando o 
seu potencial nessa aplicação. Ao mesmo tempo, as estratégias já 
estudadas não foram amplamente avaliadas em operação em tempo real 
em protótipos. Desta maneira, existe espaço para pesquisa específica e 
abrangente sobre métodos para obter estratégias otimizadas e baseadas 
em aprendizado de máquina para o gerenciamento de energia em 
máquinas de contrução. 

Objetivos e Perguntas de Pesquisa 

O objetivo desta tese é avaliar dois métodos para a obtenção de 
estratégias de gerenciamento de energia para máquinas de construção. 
Os métodos são baseados em otimização e aprendizado de máquina. É 
esperado que a combinação desses dois tipos de técnicas resulte em um 
aumento de eficiência das máquinas. Os dois métodos são avaliados com 
base nas estratégias de gerenciamento de energia quando do 
cumprimento da funcionalidade esperada, do aumento da eficiência da 
máquina e do atendimento de critérios de robustez e segurança. 

Para alcançar este objetivo, esta tese é guiada pelas seguintes 
perguntas de pesquisa:  

RQ1. Como estratégias de gerenciamento de energia baseadas em 
aprendizado de máquina podem ser obtidas para máquinas de 
construção? 

RQ2. Que melhoria de eficiência pode ser esperada para máquinas de 
construção, quando operando com estratégias de gerenciamento 
de energia baseadas em aprendizado de máquina? 

RQ3. Estratégias baseadas em aprendizado supervisionado e 
aprendizado por reforço, usando redes neurais como 
representação de funções, podem superar os desafios 
relacionados à arquiteturas de sistemas e operação de máquinas 
de construção? 

RQ4. Quais vantagens e desvantagens se pode esperar de métodos 
baseados em aprendizado de máquina para o gerenciamento de 
energia em máquinas de construção? 

Metodologia 

O primeiro método avaliado é baseado em aprendizado supervisionado 
envolvendo a combinação de programação dinâmica e redes neurais. 
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Esta abordagem é aplicada para o controle de uma carregadeira híbrida 
de rodas. O segundo método é baseado em aprendizado por reforço 
também utilizando redes neurais. Esta abordagem é aplicada para o 
controle do braço de uma escavadeira. Cada método é avaliado em 
estudo de caso específico. 

Os dois métodos têm uma fase inicial de aprendizado em simulação 
utilizando modelos para representar o comportamento dos sistemas 
físicos. Após o treinamento, os controladores são implementados 
diretamente nas máquinas para avaliação experimental.  

O desenvolvimento desta tese envolve modelagem de sistemas físicos, 
simulação, otimização, aprendizado de máquina e avaliação 
experimental. 

A robustez das estratégias de gerenciamento de energia é avaliada por 
meio de comparação entre os domínios de desenvolvimento e de 
aplicação. 

Estudos de caso e resultados 

Dois estudos de caso foram elaborados para permitir a avaliação dos 
métodos. 

O primeiro estudo de caso consiste na avaliação do método que 
combina programação dinâmica e redes neurais. Ele é aplicado para o 
controle do sistema híbrido de uma carregadeira de rodas. O controle 
desse sistema permite a recuperação de energia cinética durante a 
frenagem e posterior uso para propulsão. Dessa maneira, o consumo de 
combustível pode ser reduzido. 

Com base em um modelo suficientemente representativo do 
comportamento da máquina, vários ciclos de trabalho são utilizados 
como entrada para a otimização do controle do sistema híbrido. 
Programação dinâmica é a técnica utilizada para encontrar a solução 
ótima de como este sistema deveria ser controlado para minimizar o 
consumo de combustível durante os ciclos de trabalho. A otimização é 
restringida por regras que garantem a segurança da operação. Por 
exemplo, a ação de frenagem não pode ser passível de erros, e por conta 
disso, é implementada através de regras. 

Uma rede neural é treinada para encontrar a função que mapeia o 
estado do sistema para a variável ótima de controle. A rede treinada, 
junto com regras adicionais, implementa a estratégia de controle. 

Esse controle é implementado na máquina para avaliação 
experimental. Nestes experimentos, um operador profissional opera a 
máquina em ciclos de trabalho similares ao que a rede foi treinada. 
Resultados mostram uma eficiência superior à uma estratégia baseada 
em regras desenvolvida por engenheiros da empresa parceira. Dessa 
maneira, foi confirmada a capacidade desse tipo de método de encontrar 
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automaticamente estratégias de controle otimizadas e de implementá-
las nas máquinas. Ao mesmo tempo, foi percebida a necessidade de 
continuar o treinamento da rede após aplicada ao sistema real para 
corrigir diferenças entre os domínios de desenvolvimento e aplicação. 

O segundo estudo de caso, consiste na avaliação do método baseado 
em aprendizado por reforço. A motivação para estudar esse tipo de 
método surge da capacidade deles de interagirem com o sistema 
enquanto aprendem a controlá-lo. Isso permite a continuidade do 
treinamento com o sistema real para corrigir diferenças entre os 
domínios de desenvolvimento e aplicação. 

Este método foi aplicado para a seleção de modos de operação de um 
atuador hidráulico multicâmaras que faz parte do sistema de atuação do 
braço de uma escavadeira. A escolha de diferentes modos de operação 
permite a redução de perdas energéticas no conjunto de válvulas que 
controlam os atuadores. Dessa forma, o objetivo é, para cada estado do 
sistema, encontrar o modo que resulta em menores perdas energéticas. 

Assim como no caso anterior, o agente é treinado em um ambiente de 
simulação onde, interagindo com o modelo do sistema, aprende 
automaticamente como controlá-lo segundo o objetivo desejado. Neste 
caso, também são adicionadas regras que garantem a operação segura do 
sistema. 

Após treinado, o agente é aplicado para controlar o sistema real. Os 
experimentos mostram a capacidade do método de encontrar uma 
solução otimizada e de implementá-la diretamente no sistema real. 
Também é percebido uma elevada robustez à situações não 
necessariamente vistas durante o processo de treinamento. Também é 
visto a necessidade de continuidade do treinamento após aplicado.  

Contribuições 

As principais contribuições desta tese são: 

• Demonstração da performance de máquinas de construção 
operando com estratégias de gerenciamento de energia baseadas 
em aprendizado de máquina; 

• Avaliação de um método de aprendizado supervisionado e de um 
método de aprendizado por reforço; 

• Uma análise da segurança e robustez de controladores baseados 
em aprendizado de máquina para gerenciamento de energia em 
máquinas de construção;  

• Um estudo mostrando a importância de considerar partes da 
estrutura de controle da aplicação real já no processo de geração 
de dados; e 
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• Demonstração de que métodos baseados em aprendizado de 
máquina, usando dados de modelos de simulação para 
treinamento, podem resultar em controladores que operam bem 
na prática. 

Conclusões 

Esta tese avaliou o uso de aprendizado de máquina como o meio para 
aprender e implementar estratégias de controle para gerenciamento de 
energia em máquinas de construção. Dois métodos foram utilizados, um 
baseado em aprendizado supervisionado e outro baseado em 
aprendizado por reforço. 

Os dois métodos foram avaliados desde o desenvolvimento até a 
implementação em experimentos, sendo um em uma máquina real e 
outro em uma bancada de testes. Tópicos relacionados à robustez, 
confiabilidade e performance foram abordados. Os dois estudos de caso 
forneceram as informações para responder as perguntas de pesquisa: 

RQ1. Como estratégias de gerenciamento de energia baseadas em 
aprendizado de máquina podem ser obtidas para máquinas de 
construção? 

Redes neurais, treinadas sob um abordagem de aprendizado 
supervisionado ou sob uma abordagem de aprendizado por reforço, 
possuem a capacidade de automaticamente aprender estratégias de 
controle optimizadas e de implementar elas diretamente nas máquinas  
como a estratégia de gerenciamento de energia. Entretanto, devido ao 
fato de o aprendizado inicial ser baseado em modelos, pode existir a 
necessidade de continuar o treinamento depois de implementadas para 
adaptar a estratégia ao sistema real. 

RQ2. Que melhoria de eficiência pode ser esperada para máquinas de 
construção, quando operando com estratégias de gerenciamento 
de energia baseadas em aprendizado de máquina? 

Os resultados dessa tese não evidenciaram quais estratégias de 
controle baseadas em aprendizado de máquina possuem limitações para 
aprender e implementar estratégias de controle. Dessa maneira, esses 
tipos de controladores podem fazer com que as máquinas operem mais 
próximas à sua eficiência teórica se comparados com estratégias 
baseadas em regras. 

RQ3. Estratégias baseadas em aprendizado supervisionado e 
aprendizado por reforço, usando redes neurais como 
representação de funções, podem superar os desafios 
relacionados a arquiteturas de sistemas e operação de máquinas 
de construção? 
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Os métodos estudados nesta tese mostraram-se robustos à aplicação 
em máquinas de construção quando operando em condições similares às 
de treinamento. Isso significa que, eles são robustos a diferenças nos 
modelos e ainda assim capazes de operar em ambientes levemente 
diferentes daqueles que foram treinados. Entretanto, foi identificada a 
necessidade de continuar o trainamento após a implementação para 
aumentar a robustez. Também foi mostrado que eles são capazes de 
aprender as relações complexas entre variáveis do sistema e as decisões 
de controle para máquinas de construção. 

RQ4. Quais vantagens e desvantagens se pode esperar de métodos 
baseados em aprendizado de máquina para gerenciamento de 
energia em máquinas de construção? 

Adaptabilidade e segurança são os principais pontos de preocupação 
quanto à aplicabilidade deste tipo de método para gerar estratégias de 
gerenciamento de energia para máquinas de construção. As estratégias 
precisam ser acompanhadas de regras para garantir a segurança em 
todos os cenários de operação. Por outro lado, elas são capazes de 
encontrar automaticamente estratégias de gerenciamento de energia 
para máquinas de construção e aplicá-las diretamente nos sistemas com 
um nível considerável de robustez a diferenças entre os ambientes de 
desenvolvimento e de aplicação. 

Palavras-Chave: Aprendizado de Máquina, Gerenciamento de 
Energia, Máquinas de Construção 
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AI Artificial Intelligence 
AUX Auxiliary Functions 
AD Application Domain 
C Controller 
CN Network trained on data from constrained optimisation 
CONV Conventional 
CRS Complementary Energy Recuperation and Storage System  
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Introduction 

This thesis is about the evaluation of methods based on machine learning 
to obtain energy management strategies for construction machines. 
More specifically, it addresses the development and evaluation of strate-
gies based on two methods to learn and implement control decisions in 
real machines. 

The global move towards meeting climate change goals is pushing the 
development of greener and more efficient systems. This is no different 
for mobile working machines since they are considered a fundamental 
part of the problem to be solved to meet those goals. 

Mobile working machines, such as excavators, wheel loaders, haulers, 
and forwarders, are characterised by a powertrain architecture not only 
dedicated to the translational motion but also the control of work func-
tions to handle heavy loads. Due to the weights of the machines and han-
dled materials, they have high kinetic and potential energy. Hydraulics 
has been the primary technological solution for motion control in such 
machines, and therefore, it is one of the major power consumers. Typi-
cally, hydraulic systems of mobile machines have low efficiencies. Part of 
the solution to reducing the environmental impact of their operation in-
volves the development of improved hydraulic systems that might in-
clude the capability to recover the available kinetic and potential ener-
gies. 

The capacity to recover, store, and/or reuse energy results in added 
control degrees of freedom that need to be controlled to perform so-
called energy management. Energy management strategies define when, 
how much, and where energy is generated, recuperated, stored, and re-
used. It manages the energy shared between multiple sources to multiple 
consumers. Therefore, a holistic view of the machine, its subsystems, and 
operation tasks is needed to improve the energy management. The en-
ergy efficiency gains are, therefore, a consequence of the system archi-
tecture and energy management strategy (EMS). 

There are already several methods to generate EMSs for on-road hy-
brid vehicles, for example: Dynamic Programming, Equivalent Con-
sumption Minimisation Strategy, Rule-based, Fuzzy Logic, Model Based 
Control, and Machine Learning. The EMSs obtained through such tech-
niques differ in terms of their capacity to be implemented online, opti-
mality, required computational power, capability to include various 
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operational conditions and scenarios, adaptability, and easiness of real-
isation for complex systems. 

The most widely used method for obtaining EMSs for construction 
machines is the rule-based one due to its high reliability and easy reali-
sation. However, rule-based EMSs suffer from sub-optimality and are 
not easily developed for more complex machines, usually resulting in 
high development time and increased sub-optimality. 

In this sense, construction machines with improved hydraulic sys-
tems and/or energy recuperation capabilities, have a higher capacity for 
efficiency improvement but are the most challenging ones regarding the 
design of EMSs. Thus, the maximum energy efficiency of construction 
machines will most likely not be achieved with rule-based EMSs, but with 
other techniques that can handle the complexity of their architectures, 
tasks, and working environments while maintaining their performance. 
Currently used methods to generate EMSs for on-road hybrid vehicles 
might be applicable to construction machines but it is not certain that 
they will extract their highest performance. 

One category of methods, explored for on-road vehicles, uses machine 
learning techniques to generate the EMS or as an additional technique to 
improve their performance, for example, through prediction. Not only in 
the realm of control machine learning has proven capable of automati-
cally learning complex functions from a set of data. When using machine 
learning, one is interested in their capability to generalise the learned 
knowledge for scenarios not seen during training. 

Methods based on machine learning seem to be up to the challenges 
and requirements posed by energy management in construction ma-
chines. It is expected that they can learn and implement control decisions 
that result in higher machine efficiency. At the same time, it is expected 
that they can generalise the learned control strategies for other similar 
scenarios. This would be beneficial for energy management in construc-
tion machines because the tasks and load scenarios they experience dur-
ing operation are vast. If the strategies yield increased machine efficiency 
and are robust when deployed to the real system, an additional ad-
vantage would be the capability to automatically learn a control strategy, 
which could possibly reduce the development time of such machines. 

Despite the potential of this type of method, there are no extensive 
studies demonstrating, in prototypes, their applicability. In this way, a 
specific and comprehensive research on methods based on machine 
learning to obtain energy management strategies for construction ma-
chines is missing. 
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1.1 Aim and Research Questions 

The aim of this thesis is to evaluate two methods based on machine learn-
ing to generate controllers for energy management in construction ma-
chines. The focus is on achieving energy efficiency improvements in the 
operation of the machines and on automating part of the development 
process of such controllers. Machine learning is selected due to its capa-
bility to automatically learn complex knowledge representations from a 
set of data and due to its generalisation capability.  

One of the methods is supervised learning, where the learning target 
is the output of control optimisations with dynamic programming. The 
other method is reinforcement learning, where the energy management 
strategy is learnt while the agent interacts with the system.  

The methods are evaluated based on the capacity of the resultant en-
ergy management strategies to fulfil system functionality and increase 
machine efficiency, as well as aspects related to robustness and safety. 
The last two points for evaluation are included because the methods are 
data-driven approaches that might suffer drawbacks in prediction per-
formance when deployed to domains for which they were not trained. 

To achieve the above aim, this thesis is guided by the following re-
search questions: 

RQ1. How can machine learning-based energy management strategies 
be obtained for construction machines? 

RQ2. What efficiency improvements can be expected from construction 
machines when operating with machine learning-based energy 
management strategies? 

RQ3. Can supervised learning and reinforcement learning-based meth-
ods, using neural networks as function representation, overcome 
the challenges related to system architecture and operation of con-
struction machines? 

RQ4. What advantages and drawbacks can be expected from machine 
learning-based methods for energy management in construction 
machines? 

1.2 Methodology 

To demonstrate that machine learning can be used for energy manage-
ment in construction machines, the two described methods are used aim-
ing to generalise two possible approaches to the goal.  

With supervised learning the case addressed concerns a situation 
where the developer has the information on how the system should be 
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controlled but does not have the means to implement it. It also covers 
the case where the information exists but other methods (e.g., through 
rules) result in poor machine performance. The information on how to 
control the system could, for example, come from control optimisations. 
This method is applied to a hydraulic hybrid wheel loader in the first case 
study.  

With respect to reinforcement learning the case addressed involves a 
scenario where the developer does not have the information on how the 
system should be controlled. This method can learn how to control the 
system by interacting with it. This approach is applied to an excavator 
arm in the second case study. 

Neural networks are used as function representation in both methods. 
In the supervised learning case, the network predicts the control action, 
while in the reinforcement learning case, it predicts the expected value 
for taking a control action, which allows for the selection of the best ac-
tion. Due to their high capacity to map complex representations from in-
put to output, it is expected that neural networks, trained under these 
two methods, will overcome the challenges of operation and system ar-
chitectures of construction machines. In other terms, it is expected that 
they can handle the high nonlinearity and dimensionality associated with 
the control problem. Consequently, it is expected that these controllers 
can yield improved machine efficiency. 

Both methods have an initial learning process performed offline in 
simulation, having models as the representation of the physical systems’ 
behaviour. The models are used to generate the information of how the 
systems should be controlled. After training on this data, these trained 
controllers are directly deployed to the machines for experimental eval-
uation. 

The development of this thesis involves modelling the physical sys-
tems, simulation, optimisation, machine learning, and experimental 
evaluation. 

The robustness of the resultant EMSs is assessed by comparing the 
shift between the training domain and application domain. 

1.3 Delimitations 

Although generalising for other types of construction machines with dif-
ferent subsystems, like electric driven subsystems, this thesis uses as test 
cases hydraulic systems of combustion engine-driven construction ma-
chines. It is understood that the same techniques could be applied to 
other types of subsystems like battery and fuel cell hybrids. 

The thesis is also limited to evaluating the two mentioned approaches 
for the development of energy management strategies. Therefore, the 



Introduction 

 5 

outcome of the thesis is not an argument concerning what is the best 
method for the development of energy management strategies for con-
struction machines. Rather, it presents an extended analysis of two pos-
sible methods and presents arguments in favour or against them, mostly 
with focus on their application to real systems. 

This thesis does not aim to find what the best machine learning model 
is for this type of application. Instead, it evaluates, on a higher level, the 
applicability of the two methods with networks of a size sufficient for the 
tasks. In this sense, it is understood that potential improvements can be 
achieved by a dedicated study focused on the machine learning part. 

The training of the strategies does not continue after they are de-
ployed to control the real systems. Even though continued training could 
possibly increase their performance and robustness, this is not done in 
this thesis. 

1.4 Contribution 

The main contributions of this thesis are summarised as follows:  

• Demonstration of the performance of construction machines op-
erating with machine learning-based energy management strate-
gies; 

• Evaluation of a supervised learning method and of a reinforce-
ment learning method; 

• Demonstration that machine learning-based methods, using data 
from simulation models for training, can result in controllers that 
perform well in practice; 

• An analysis of the safety and robustness of machine learning-
based controllers for energy management in construction ma-
chines in real application; 

• A study showing the importance of considering parts of the con-
trol structure from the real application already in the data-gener-
ating process; 

• Increased comprehensiveness on the problem of energy manage-
ment for construction machines. 

The structure of the content of the thesis and their connection with 
the papers is represented in Figure 1.1. 
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Figure 1.1  Content of the thesis. 

1.5 Thesis Outline 

The thesis was developed in a double degree and co-supervision format 
between Linköping University (LiU), Linköping, Sweden, and the Fed-
eral University of Santa Catarina (UFSC), Florianópolis, Brazil. The ini-
tial parts, including part of the literature review and the thesis proposal 
that led to the doctorate qualification, were developed at UFSC. The re-
maining phases were developed at LiU. This thesis had Volvo Construc-
tion Equipment AB in Eskilstuna, Sweden, as an industrial partner. 

Chapter 2 presents a discussion on the complexity of construction ma-
chines and the problem of generating energy management strategies for 
them. Chapter 3 describes methods for energy management with a 
deeper focus on the techniques used in this thesis, while Chapter 4 de-
scribes the study cases performed to allow the assessment of the meth-
ods. Chapter 5 presents an analysis of the reliability of the generated 
EMSs, with Chapter 6 presenting the summary of the papers written on 
the topic. Finally, Chapter 7 presents discussions and future studies, fol-
lowed by conclusions in Chapter 8. 
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2 

Construction Machines 

Construction machines are versatile equipment used in construction, 
mining, farming, and several other segments. Their scalability, ranging 
from few to hundreds of kilowatts, is a characteristic allowing them to 
meet a great number of needs. The tasks they perform can be succinctly 
described, but not limited to, moving a load from one point to another in 
an environment. Nevertheless, it is not a simple task to be accomplished. 
It involves the interaction between machine subsystems under operator 
control, handling them against variable and uncertain external loads. 
Therefore, they are challenging tasks that can be executed in different 
forms. At the same time, there are several possible subsystem architec-
tures that result in machines capable of performing those tasks. Efficient 
operation has thus become a consequence of task, machine, and control. 

2.1 Power Flow Between Machine Subsystems 

Differently from on-road vehicles, where the power has one main path, 
in construction machines the power can have multiple paths. Power con-
suming subsystems can be divided into work functions (WH), also called 
work hydraulics, used to move the loads; drivetrain (DT), used for pro-
pulsion; and auxiliary functions (AUX), used for cooling, etc. 

In conventional machines, the power to those functions is supplied by 
the internal combustion engine (ICE) with a fuel tank as energy storage 
(ES). An architecture of a conventional machine is shown in Figure 2.1. 

Conventional machines do not usually have an installed capability to 
recover the kinetic energy from the drivetrain or the potential energy 
from the work functions. This results in comparatively simpler architec-
tures with respect to how power can flow between subsystems. Addition-
ally, the functions are usually mechanically coupled to the engine. 

Hybrid machines, on the other hand, are characterised by two or more 
energy storage devices. Hybridisation aims to reduce energy consump-
tion and/or reduce emissions through the combined use of several 
sources of energy to meet the power demanded from consumers [1]. Typ-
ically, one of the energy sources can perform energy recuperation. There-
fore, lower energy consumption from the primary source is a result of the 
recuperation of kinetic and/or potential energy and decoupling between 
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different power sources and consumers for more efficient individual op-
eration, in addition to the maximum utilisation of installed power capac-
ity. 

 
Figure 2.1  Energy paths in a conventional construction machine. 

In construction machines, hybridisation targets either the drivetrain 
only or the work functions only, or both. The matrix representation in [2] 
provides an overview of possible architectures of hybrid construction 
machines. Figure 2.2 shows a hypothetical concept of a hybrid construc-
tion machine. 

 
Figure 2.2  Energy paths in a hypothetical hybrid construction machine. 

In this concept, the complementary energy recuperation and storage 
system (CRS), also called the secondary energy source, is connected to 
both the drivetrain and work functions. It could be a hydraulic accumu-
lator, for example. To have a broader coverage, the engine is called prime 
mover (PM). This allows electric driven concepts to fit into this represen-
tation, which in this case, allows the main energy storage system to also 
recuperate energy. The represented paths for energy exchange between 
subsystems can be mechanical, hydraulic, electric, or a mix of them. This 
concept allows for the following additional energy exchange between 
subsystems: 

• Kinetic energy from drivetrain to drive the work functions, 
• Kinetic energy from drivetrain to charge the storage systems, 
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• Potential energy from work functions to charge the storage sys-
tems, and 

• Potential energy from work functions to drive the drivetrain. 

This is an example of the higher complexity level that can be involved 
in terms of system architecture and energy exchange possibilities. This is 
especially so if compared to on-road vehicles. In general terms, the de-
grees of freedom concerning how power can flow between subsystems 
are increased. As a result, the potential for energy efficiency improve-
ment in such machines is high. 

Hybridisation, or at least the capability to recover available energy, is 
a trend in the development of construction machines as can be noticed 
from review papers on the topic [3-8]. However, the architecture com-
plexity depicted in Figure 2.2 is uncommon. What is more common are: 
architectures where one of the subsystems (WH or DT) is hybridised; ar-
chitectures designed from the beginning to allow for the recovery of 
available energy (not necessarily hybrid); and more efficient subsystems, 
with more degrees of freedom, to drive the loads. 

2.2 Examples of Machine Architectures 

Series hybrid drivetrains allow a full decoupling of the engine from the 
wheels. Consequently, there is certain freedom to combine engine speed 
and torque to meet the demanded power. Therefore, high efficiency op-
eration points can be set for the engine [9]. At the same time, the energy 
stored in the secondary source can be used at specific moments to reduce 
engine power requirements while meeting the necessary power demand 
[10]. In series hybrid wheel loaders, the decoupling between drivetrain 
and work functions is a major contribution for fuel savings [11]. This is 
because the power to each function can be controlled according to the 
respective demand. Examples of series hybrid mobile machines can be 
found in [12-16]. 

Parallel hybrid drivetrains do not necessarily decouple the engine 
from the drivetrain. They allow for the recovery of kinetic energy when 
braking and return it to the drivetrain in specific moments to reduce en-
gine power demand. This configuration only allows engine operation 
point management when the secondary power source is delivering 
power. Hydraulic hybrid parallel systems are attractive for applications 
with frequent start-stop, which is the case for wheel loaders operating in 
short loading cycles. At least at the research level, parallel hybrid wheel 
loaders were studied in [10, 14, 17-19]. A parallel hybrid system that can 
recover energy from work functions and drivetrain is presented in [20].  
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Power-split hybrid drivetrains for wheel loaders are studied in [21] 
and [22]. In [21], the authors state that power-split drivetrains allow for 
the management of the engine’s operation point and regenerative brak-
ing; they can also reduce interferences between drivetrain and work 
functions, which can improve fuel efficiency. 

A considerable amount of hybrid architectures was also proposed for 
the recovery of potential energy from the linear actuation in work func-
tions. In this case, the potential energy is recovered from overrunning 
loads instead of being throttled in control valves, for example. 

Hydraulic transformers to recover the energy from loads and deliver 
it back to the same subsystems are also a possibility for energy efficiency 
improvement [23-27]. They can be seen as ‘add-on’ systems where a hy-
draulic machine is coupled at the meter-out port of the actuator. This 
machine, working as a motor, drives another hydraulic machine, work-
ing as pump, to charge an accumulator. The reverse process occurs when 
returning the energy to the system. An advantage of transformers is that 
they allow the decoupling of pressure levels between storage and load, 
whereas a drawback is the added pump/motor energy losses. 

There are concepts where the recovered energy from the work func-
tions is used to assist the engine. Excavators are the most common ap-
plication for recovering potential energy from the boom and kinetic en-
ergy from the swing motion. Examples of such architectures are found in 
[28-31]. Such concepts reduce the interaction between the storage and 
control of the load when returning the recovered energy to the system. 
Essentially, the control of the actuation systems remains the same, ex-
cept for the overrunning loads when recovering energy. 

Figures 2.1 and 2.2 are high-level simplified representations of possi-
ble architectures for such machines, and the concepts presented up until 
this point mainly accomplish energy efficiency improvement by recover-
ing available energy. However, energy efficiency improvement does not 
come only from hybridisation.  

As indicated in [32], and also discussed in [33], energy efficiency im-
provement can also come from more efficient actuation systems, which 
also contain means of recovering energy but without an ‘add-on’ system. 
This usually requires a redesign of the powertrain with that requirement 
from beginning. 

For the work functions, it is common to tackle throttling losses of 
valve-controlled systems with throttle-less actuation systems. A concept 
with this approach is presented in [34] and shown in Figure 2.3. A similar 
approach, but for an excavator, is presented in [35]. The linear actuation 
system is based on the secondary control concept presented in [36] and 
also studied in [37] for the linear actuation system of an excavator arm. 
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Figure 2.3  Architecture of a wheel loader concept. Reproduced with per-
mission from [34], Karl Pettersson, A Novel Hydromechanical Hybrid Mo-
tion System for Construction Machines, Copyright Karl Pettersson, 2016. 

The advantage of secondary controlled systems is the reduced throt-
tling losses in comparison to valve-controlled systems, like load sensing. 
It also allows for the decoupling between loads and independent control 
of each port of the actuator. 

Independent meter-in systems, based on the concept of common 
pressure rail, are presented in [38] and [39]. In similar way, they allow 
for the independent control of each actuator port to reduce throttling 
losses. 

Another way of reducing throttling losses is by means of displace-
ment-/pump-controlled systems. As the name indicates, the linear actu-
ator is directly controlled by a variable displacement/speed pump/mo-
tor. An architecture with displacement-controlled actuators is shown in 
[40]. The system presented in [40] is still driven by the engine, thus there 
is a strong coupling between the actuation of each function. However, 
there are recently proposed concepts that take advantage of machine 
electrification and have independently driven actuation systems [41]. 

These concepts of displacement-/speed-controlled actuators are sim-
ilar to the ones presented in [34] and [35] in the sense of having a com-
mon power distribution medium that is mechanic, hydraulic, or electric. 
In these cases, the energy from overrunning loads can be supplied to the 
power distribution medium to be used by other actuators or to charge the 
energy storage. 
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2.3 Architecture vs. Energy Management 

In [42], the high variability of construction machines operation effi-
ciency due to variability among operators is shown. In [43] and [44], it 
is shown that the optimisation of how the tasks are performed has also a 
significant contribution to the energy efficiency. 

It is also known that efficiency is a consequence of the sizing of com-
ponents and that optimisation of components sizes and control should 
be carried together in early development stages [1; 10; 11; 45-46]. In sim-
ple terms, the highest efficiency is only found with an optimal EMS and 
optimal component sizing. However, an optimal component sizing will 
only be found with an optimal EMS. The problem is coupled and requires 
a combined EMS and component sizing optimisation.  

Therefore, energy efficiency improvement or the optimisation of a 
construction machine energy consumption is a consequence of the inter-
action between operator, task, system architecture, component sizing, 
and control. It is a multi-level task that ideally should be solved in one 
general optimisation problem with many degrees of freedom. However, 
this is a difficult problem that so far has been solved in part by constrain-
ing or locking some of the degrees of freedom. In this thesis, the focus is 
on the part of energy management with constrained system architecture, 
task, operator, and sizing of components. Despite the constraints it is still 
not a trivial problem. 

The previous sections highlighted that there are many possible system 
architectures for construction machines and their subsystems. At the 
same time, it was highlighted how complex the energy exchange in, 
and/or between, the subsystems can be. It is also noticed that complex 
architectures and subsystems seem to inherently have the higher poten-
tial for energy efficiency gain. However, despite their installed potential 
for efficiency improvement, this is not achieved without a proper energy 
management. The strategy for energy management is vital to achieve the 
expected high efficiency improvement [5], [47]. 

An important point is observed from the assessment of possible ma-
chine architectures. The efficiency improvement can be dealt with at a 
machine level with ‘add-on’ systems or in the subsystem level, with, for 
example, displacement-controlled subsystems. In the first case, the con-
trol of the ‘add-on’ system is more focused on increasing the machine 
efficiency than on meeting the actuation control performance. In the sec-
ond case, the control of the subsystem is more focused on meeting an 
actuation control performance than efficiency. Therefore, there is a du-
ality in the control strategies. This means there must be a focus on con-
trol actuation performance and the energy efficiency aspect. How clear 
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the division is between them seems to vary between one architecture to 
another. 

As it can be noticed, the design of the energy management strategy for 
such machines and/or subsystems is not a simple task. This is due to the 
complexity of the task, the architecture, and the integration with the ac-
tual actuation control. This drives the focus of the thesis towards evalu-
ating two methods to generate energy management strategies. In princi-
ple, it is assumed that they can handle the complexity around the opera-
tion and control of construction machines and their subsystems. 
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3 

Methods for Energy Management  

Energy management is a fundamental part of obtaining a high efficiency 
operation from the machines described in the previous chapter. The EMS 
defines where, how much, and when the power from different sources is 
split to fulfil the power requested by different functions of the machine. 
This chapter aims to describe methods to generate and implement en-
ergy management strategies. A classification is used to separate methods 
that can be used for offline or online operation. Despite the classification 
and description of several methods, more attention is given to the meth-
ods that are the central topic of this thesis. 

3.1 Classification of Methods 

Most studies on energy management address on-road vehicles. A com-
mon way to classify methods to generate EMSs is into two main catego-
ries, optimisation-based or rule-based methods [47-49]. Optimisation-
based methods run an optimisation to select the control decision that 
minimises the cost function. Rule-based methods, as the name suggests, 
use rules to build the strategy, e.g., deterministic or fuzzy rules. 

On the other hand, methods can be classified according to their cau-
sality. They are classified as methods that can generate online strategies 
if the final strategy is causal or if they rely on predictions of the future 
drive cycle conditions. They are classified as methods that generate of-
fline strategies if the final strategy is non-causal, e.g., when performing 
a global optimisation where it is necessary to have prior knowledge of the 
drive cycle. This classification of methods is also used in [50] and [51]. 

To have the online or offline categories as the highest class, instead of 
rule- or optimisation-based, is more suitable for this thesis. This is be-
cause one of the methods studied aims at using machine learning to over-
come the non-causality of the global optimisation method.  

An overview of some of the methods to generate EMSs is presented in 
Figure 3.1 following the adopted classification structure. It is not a list of 
all methods but of those that, according to the literature review, seem to 
have more application cases to construction machines. 



On ML-Based Control for Energy Management in Construction Machines 

16 

 
Figure 3.1  Classification of methods to generate energy management 
strategies, inspired on [50]. 

Although called offline or online, the development of the strategies is 
carried offline. In other terms, the strategies are not generated while in 
operation inside the systems they are controlling. In this sense, consid-
ering the methods addressed in this thesis, reinforcement learning would 
be the only fully online method because it can learn the strategy while 
interacting with the real system. 

The methods evaluated in this thesis are a combination of dynamic 
programming and neural networks, and reinforcement learning (RL). 
Both are classified as machine learning-based methods, under the online 
rule-based category. Here it is considered that neural networks are in es-
sence a rule-based method. The main difference is that neural networks 
encode the knowledge in the weights, biases, and activation functions. In 
a deterministic rule-based method this knowledge is constructed using 
“if-then-else” rules.  

In one of the methods evaluated in this thesis, the neural network, 
learns from the results of dynamic programming optimisations and does 
not update while in the application/online. Thus, it is classified as an 
rule-based method and not as optimisation-based. In fact, the neural 
network is the means of implementing the energy management strategy 
and not what generates the knowledge. 

In a similar way, RL is a machine learning-based method, and since 
in this thesis it does not continue to learn after being deployed to control 
the real system it is not classified as an optimisation-based method. In 
principle it could continue the learning after deployment, which, in this 
case, would make it fall into the category of optimisation-based methods 
as well. 
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3.1.1 Offline Methods 

Some of the optimisation-based strategies are capable of finding the 
global optimal solution but require full a priori knowledge of the drive 
cycle and therefore not implementable online. Additionally, the optimal 
result is specific to the drive cycle they were optimised for. Nevertheless, 
they usually serve as benchmark to analyse, tune, evaluate, and propose 
other sub-optimal methods that can be applied online [49, 50]. 

One such method is dynamic programming (DP). A description of DP 
can be extracted from [52] and [53]. DP is a mathematical technique 
used for the optimisation of multi-stage decision-making processes 
where the cost of the present decision must consider the cost of future 
decisions. DP at each stage ranks decisions based on the sum of the pre-
sent cost and the expected future cost, assuming optimal decisions for 
subsequent stages. It requires a discrete dynamic model of the system 
and an additive cost function. The dynamic system describes the behav-
iour of state variables influenced by decisions made at discrete time in-
stances. It is capable of finding the optimal decision-making policy for a 
number of stages; this is the policy that minimises the total cost function. 

Translating this explanation for the EMS case, the multi-stage deci-
sion-making process concerns, for example, how the power is split (con-
trol decision) between various power sources to meet power consumers 
demands over a drive cycle (decision-making process). DP can determine 
the optimal split of power to each time instance in a drive cycle, which 
minimises, e.g., the total fuel/energy consumption for the whole drive 
cycle. It is fundamental to have a model of the machine that describes its 
behaviour with the desired level of representativeness. Usually, back-
wards-facing quasi-static models are used for this purpose [10, 21]. 

DP have a high computational cost and requires a priori knowledge of 
the power demand for the whole drive cycle, thus it is not implementable 
online, as it results in a non-causal policy [54]. At the same time, the out-
put EMS from DP is not straightforwardly interpreted, which makes the 
process for deriving an implementable EMS from them a time-consum-
ing process, which also leads to sub-optimality. 

In its most common formulation, it does not improve the performance 
of the drive cycle but finds a more efficient way by taking optimised con-
trol decisions to meet that specific drive cycle. It can, however, be formu-
lated in different ways, like in [43], where the drive cycle is not pre-
scribed but rather a consequence of the DP optimisation decisions. 

The greatest advantage is that it guarantees global optimality for the 
given problem. Due to this advantage and constraints to online imple-
mentation, it commonly serves as a benchmark for the development of 
EMSs that can be implemented online, other causal controllers [54]. 
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Examples of uses for such purposes are found in [10], [14], [21], [55], and 
[56]. 

DP is used for concept evaluation to ensure that the same cycle is met 
in the most efficient way possible by the different concepts. This should 
reduce the bias in concept evaluation during early development stages. 
Examples of such applications are found in [14] for diesel-electric hybrid 
wheel loaders and in [57] for hydraulic hybrid passenger vehicles. 

Specifically for application in construction machines, an EMS for a 
wheel-loader with hybrid power-split transmission was developed in  
[21]. The authors adopted DP and made comparisons with a Rule-based 
(RB) approach. A DP approach to determining global optimal steering, 
lifting and tilting trajectories for a series electric hybrid wheel loader is 
studied in [43], and in [10], the problem of combined control and EMS 
optimisation for a parallel hybrid wheel loader is accessed. While opti-
mising the size of components, DP ensures that the best possible effi-
ciency was extracted from each design. DP and RB strategies were for-
mulated to evaluate the combined optimisation approaches in terms of 
optimality and computational load. 

3.1.2 Online Methods 

For operation in the actual machines, the so-called online EMSs are re-
quired. It must be highlighted that forward-facing simulations of dy-
namic systems are also considered ‘online’ operation. However, the focus 
here is on actual real machine operation. According to Figure 3.1, they 
are divided into optimisation-based and rule-based categories. 

Deterministic Rule-Based 

Deterministic Rule-Based (RB) strategies are characterised by lower 
computational requirements, simplicity, and higher applicability online, 
at the cost of sub-optimality [49]. They are heuristic strategies imple-
mented as “if-then-else” rules. Human expertise, intuition, operation 
boundaries, mathematical models, and safety considerations determine 
such rules [49, 58]. 

According to [50], there is the possibility that the control rules can be 
made detailed enough to address any special event that affects the vehi-
cle. In real driving, the rules must be adapted to cover every driving con-
dition. This can be valid to some extent for less complex passenger vehi-
cles but could be a significantly harder task for the type of machines un-
der consideration in this thesis. 

In [5], it is stated that for hybrid construction machines RB-EMSs are 
the most widely used because of their high reliability and easy realisa-
tion. Examples of rule-based EMSs for construction machines are found 
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in [18], where an RB-EMS is implemented for a parallel hybrid wheel 
loader. In [21], DP is used as a benchmark to guide the development of 
an RB-EMS for a power-split hybrid wheel loader. Similarly, [10] used 
DP to derive an RB strategy for a parallel hybrid wheel loader. A two-
pressure level threshold rule to determine when the stored energy should 
be used to drive is presented in [28] and [59]. In [60] it is presented a 
parametric RB-EMS where the limits of saturation functions are the con-
troller parameters that change according to predefined rules, therefore 
determining when to recover or reuse energy. In [61], an RB-EMS for a 
hybrid excavator is derived from the results of control optimisations with 
DP. 

Fuzzy Rule-Based 

Rather than decisions from deterministic RB strategies, Fuzzy Logic con-
trollers can obtain a proportional output and continuous EMS. They can 
assume partially true values between true and false [51]. One example of 
fuzzy logic values could be: “Very low”, “Low”, “Medium”, “High”, and 
“Very high”. A description of the parts of a fuzzy logic controller can be 
found in [62]. 

Fuzzy logic when implemented in an EMS, yields output proportion-
ality to different operating conditions, easy fuzzy rules tuning, and ro-
bustness to modelling and measurements errors are advantages [49].  

The parameters of fuzzy logic can be tuned through optimisation to 
improve their optimality. A fuzzy logic EMS for a parallel hybrid hydrau-
lic excavator is presented by [62], where genetic algorithms are used to 
optimise the membership functions parameters. An approach to deriving 
fuzzy logic EMSs for different hybrid electric vehicle architectures is pre-
sented in [63]. 

According to [49], fuzzy controllers can be further improved through 
adaptation and prediction. The parameters of the fuzzy logic can be 
adapted based on past, current and predicted vehicle operation infor-
mation. Machine learning techniques such as neural networks can be de-
veloped to perform these adaptations and predictions. 

One noticed characteristic of rule-based EMSs, either deterministic or 
fuzzy, is that usually they have only few monitored variables as inputs 
where the control decisions are based. Better decisions seem to emerge 
when more machine and environment variables are considered. When 
more variables are included for monitoring, rule-based controllers be-
come even more difficult to be constructed. 

The implementation of RB-EMSs for complex systems is a challenging 
task due to the difficulty to control continuous dynamic processes with a 
set of rules. They naturally result in sub-optimality, and this is a reason 
why great attention is given to optimisation-based EMSs. Naturally, 
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optimisation-based methods show better fuel economy performance 
than do RB strategies [58]. 

Optimisation-Based 

According to [50], online optimisation-based strategies simplify global 
optimisation problems into local optimisation problems, resulting in 
lower computational effort. This reduces the need for future drive cycle 
information, thus making them implementable online. According to the 
author, such techniques result in marginally sub-optimal results in com-
parison to offline optimisation strategies. 

The following are examples of optimisation-based EMSs: Equivalent 
Consumption Minimisation Strategy (ECMS), Model Predictive Control 
(MPC), and Stochastic Dynamic Programming (SDP). 

ECMS 

According to [50], ECMS was first developed based on the concept that 
the energy used in a vehicle comes from the engine, as such, the hybrid 
system serves as an energy buffer. 

ECMS is an instantaneous optimisation-based method for energy 
management where an equivalency factor is established to indicate the 
cost of using energy from the hybrid system. In a combustion engine hy-
brid vehicle, this equivalency translates the hybrid power to a fuel con-
sumption. The total equivalent fuel consumption is determined by sum-
ming the engine fuel consumption and the equivalent fuel consumption. 
According to [15], depending on the direction of the hybrid energy, the 
equivalent fuel consumption can be higher or lower than the actual fuel 
consumption. At every time instance the equivalent fuel consumption is 
minimised, this leads to an optimised EMS [51]. Examples of ECMS ap-
plication are found in [64] and [65]. 

A drawback of ECMS is the determination of the equivalency factor. 
It changes between tasks and states, which makes it a possible source of 
sub-optimality in the controller. One way of improving it is to make it 
adaptable and a parameter that can be tuned while in operation. An 
Adaptive-ECMS is developed for hydraulic hybrid off-road machines in 
[66]. 

MPC 

According to [51], model predictive control (MPC) is a method for calcu-
lating a system control input to optimise the system’s future output. This 
calculation is performed with a model of the system used to predict the 
system output for a given future time-horizon [50].  

An optimisation problem is formulated based on the cost of the pre-
dicted control action. For hybrid vehicles the optimisation objective 
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function can be the minimisation of fuel consumption as a function of 
the split of power between the energy sources as control decision. 

The computational load of the controller is fundamental for its appli-
cation in machines. Therefore, it usually relies on simplified models of 
the system to allow a fast computation, as can be noticed in [67] and [68]. 
An application of MPC for the energy management of construction ma-
chines is also found in [69]. 

SDP 

Another technique that involves prediction of future behaviour is sto-
chastic dynamic programming (SDP). EMSs derived through SDP are 
close to optimal and possible to implement online, which is an advantage 
over the deterministic DP [48]. 

According to [50], stochastic control is a framework developed to 
model and solve optimisation problems involving probabilities. For 
EMSs, the objective is to determine an optimal control action based on 
probabilities of transition from the current operation state to a future 
operation state. According to the author, an infinite-horizon stochastic 
dynamic optimisation problem is formulated. The vehicle power demand 
is modelled as a stationary Markov process, where the future state de-
pends only on the current state, and the transition probabilities. Accord-
ing to [70], this removes the time-dependency of the problem. The future 
power demand is predicted based on current transition probabilities, and 
the optimal EMS to meet the future power demand is then obtained us-
ing SDP. 

The optimisation using SDP is performed offline and results in a sta-
tionary lookup table that relates system states with optimal control deci-
sions. The EMS is saved in look-up tables for interpolation of the control 
signals based on current states during operation [51; 70; 71]. 

According to [72], SDP-based EMSs are optimal if the driving behav-
iour matches the assumed Markov chain model. The authors also say that 
the major impact of SDP-EMSs is on the design of new vehicles because 
the method can automatically generate EMS faster than a person could 
do manually. However, it requires a collection of representative driving 
data to perform the optimisation and determine the Markov processes’ 
probabilities of occurrence [71]. An example of the use of SDP for the 
energy management of a diesel-electric wheel loader is found in [73]. 

Section Summary 

Although the above cited studies show the potential of the methods to 
address the energy management problem it is noticed that each of them 
has its drawbacks and advantages, which is probably why no consensus 
seems to exist for the application of more advanced methods instead of 
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rule-based strategies in construction machines. This gives room for the 
evaluation of other methods, for example the ones based on machine 
learning. 

3.2 Machine Learning-Based Methods 

Machine learning, a branch of artificial intelligence (AI), encompasses 
algorithms that are able to improve their performance on a given task 
from experience [74]. In other terms, machine learning algorithms have 
the capability to acquire knowledge on their own by extracting patterns 
from raw data [75]. According to [75], it is the only viable approach for 
AI that can operate in real-world environments. Typical problems solved 
successfully by machine learning algorithms, for example, are image 
recognition, pattern identification, classification, and regression. 

A distinction between machine learning and optimisation is that in 
machine learning one wants the generalisation/test error to be low. The 
generalisation error is the expected error on a new input [75]. In other 
terms, the goal is for the algorithm to also perform well in what it was 
not trained for. 

Since in this thesis only neural networks are used as a means to en-
code the EMSs, it is the only machine learning technique described here. 

Artificial neural networks (NN) are one of the techniques from ma-
chine learning. They provide a general, practical method for learning 
from examples [74]. They are formed by the interconnection of simple 
mathematical units (neurons). With a network composed by several lay-
ers of parallel units, it is possible to approximate complex functions to 
the point of being recognised as universal function approximators [76, 
77]. The complexity of the functions they can approximate increases with 
the number of layers and neurons [78]. 

A neuron is illustrated in Figure 3.2. According to [74], each neuron 
takes a number of real-valued inputs 𝑥𝑖 (possibly the outputs of other 
units). It performs a weighted sum by multiplying each input 𝑥𝑖 by a 
weight 𝜔𝑖, and a bias 𝑏 is also added to each neuron. The output of the 
neuron (𝑦) (which may become the input to many other units in subse-
quent layers) is determined by an activation function with the weighted 
sum value as input. The connection of neurons in layers forms a network. 
An example of the structure of a feed-forward network is shown in Figure 
3.3. 

During the training process of a network, the weights and biases are 
adjusted to minimise the error between the predicted value and target 
value. It is out of the scope of this thesis to describe training algorithms; 
however, a description of the backpropagation algorithm, used to train 
networks, can be found in [74]. 
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Figure 3.2  A neuron, inspired on [74]. 

 
Figure 3.3  Representation of the structure of a feed-forward neural net-
work. 

According to [79], nonlinear activation functions, like hyperbolic tan-
gent, when used in multilayer networks, help in creating compositions 
that increase the network’s modelling power. The author continues, say-
ing that more layers increase the depth of the network, and due to similar 
reasons, also increase the modelling power. However, the Occam’s Razor 
statement provides guidance when defining the size of a network [78]. 
According to [75], simpler functions are more likely to generalise (reduce 
the test error), which is what is desired. 

A few practical hints to consider when building and training a neural 
network are found in [76], [79], and [80]. It may be better to go to mul-
tiple hidden layers, preferring long and narrow networks to short and 
wide networks. When the number of hidden units is large, the generali-
sation accuracy tends to deteriorate, as it increases the chance to overfit 
the data. Therefore, learning should be stopped before overtraining oc-
curs. Long training leads to weights and biases being tuned to fit a par-
ticular shape of the underlying structure in the dataset that might not 
represent the general dataset of the application target. 
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In this thesis, two methods based on machine learning to generate 
EMSs are evaluated: one belonging to supervised learning and another 
based on reinforcement learning. One characteristic that distinguishes 
them and drives the selection of one or the other is the availability of ref-
erence/target data, meaning that the choice for one or the other is guided 
whether or not the developer has the information about how the system 
should be controlled. 

If this information exists, an approach based on supervised learning 
could be implemented and lead to a more straightforward development 
process aiming to train the algorithm to predict the target. This means 
one might know or have the information on how to control the system, 
but it is not possible to implement this knowledge by means of heuristic 
rules or in a way that does not result in significant deviation from the 
desired control behaviour. It could also be that the information concern-
ing how to control the system is implicitly encoded in a dataset and not 
readily available to the developer. 

If the knowledge on how to control the system does not exist, then a 
reinforcement learning-based approach could be implemented since in 
this type of algorithm the knowledge of how to control the system is gen-
erated while interacting with it. 

3.2.1 Supervised Learning 

One way of obtaining an EMS based on supervised learning is by using 
results from deterministic DP as inputs for supervised learning algo-
rithms to train, for example, a neural network (NN). 

NNs have been used in the control of hybrid electric vehicles due to 
its function-approximating ability [58], where the advantage is on learn-
ing and generalisation for mapping input features to a target output. 

In [81], an approach to predict the driving condition in the near future 
and use this information to determine the optimal energy management 
is proposed. NNs are trained over a number of drive-cycles to perform 
that prediction. Results from the use of NNs to control the system are 
provided in [82]. 

In [9], a power management controller based on DP and NN for a hy-
draulic series hybrid on-road vehicle is proposed and investigated. If the 
optimal accumulator pressure trajectory is known, then an implementa-
ble control scheme can achieve a nearly global optimal fuel efficiency. An 
NN was then trained to control the optimal pressure trajectory based on 
the vehicle’s velocity. In this way, the NN generalised the relationship 
between vehicle velocity and accumulator pressure. 

Other similar approaches combining NN learning from optimisation 
results from DP or other control optimisation techniques were used by 



Methods for Energy Management 

 25 

other authors as well for the control of on-road vehicles [83-92]. What is 
observed from this collection of studies on the topic is the ability of the 
networks to learn complex decision-making processes from system 
states and other measured variables and implement them in both simu-
lation domains and in real systems. In some cases, the optimisations are 
multi-objective, like in [88]. Their performance seems to be independent 
from the type of systems and architectures, like series, parallel, busses, 
and light vehicles. It is also seen as a large distinction in types of archi-
tectures and sizes of networks used. However, it is a method not exten-
sively studied for construction machines. 

An investigation using the same type of method but for a hybrid wheel 
loader is presented in [93]. This simulation study was part of the studies 
presented in this thesis with the goal of evaluating the performance of 
the EMSs based on NNs along with the controllers of the machine and 
for a slightly different machine configuration than the one studied here.  

The supervised training of the networks requires a large amount of 
drive cycles to be optimised with DP. This is to increase their capacity to 
find generalisation rules that are applicable to unseen cases. This could 
reduce the problem of optimisation-based EMSs highlighted by [11]. The 
author says that a problem is that they will optimise a certain known 
drive cycle, and that a single cycle does not guarantee optimality for the 
whole machine operation tasks. By learning from several examples, it is 
expected that NNs could find generalised rules. They would not operate 
optimally but could partially overcome the problem faced by some of the 
optimisation-based EMSs, like the adaptation to changing working con-
ditions. 

Positive aspects of this supervised learning approach are that the con-
trol developer knows what should be learnt and can work towards mak-
ing sure that the network learns it while training. The availability of a 
reference to compare to is also a positive aspect. This means the learned 
control strategy can be directly compared to the target strategy. 

A negative aspect is that usually the target reference is obtained from 
control optimisations based on simplified models of the system and of its 
interaction with the environment, like when using DP. This means that 
the target is an approximate solution of the real behaviour and not the 
global optimal solution for the real system. In some cases, the lack of 
ability to generate a target reference while the machine is operating pre-
vents it from further training while deployed to the real system. They 
might suffer from adaptability to the actual machine and working condi-
tions. This is a motivation to also look for algorithms that can continue 
the learning in practice. 
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3.2.2 Reinforcement Learning 

“Reinforcement learning is learning what to do - how to map situations 
to actions - so as to maximise a numerical reward signal. The learner 
is not told which actions to take, but instead must discover which ac-
tions yield the most reward by trying them,” [94].  

A representation of a reinforcement learning set-up, in comparison to 
a traditional control set-up, is shown in Figure 3.4. 

 
Figure 3.4  Reinforcement learning framework vs. traditional control. 

To some extent the agent in RL is equivalent to the controller and the 
environment is equivalent to the plant. In traditional control there is an 
external reference (𝑠𝑟𝑒𝑓) generated, for example, by an operator, that is 

external to the plant being controlled. In RL the operator generating the 
reference is inside the environment with whom the agent is interacting 
with to maximise the reward (𝑟). While in traditional control the control-
ler is defined by the control engineer, in RL the agent learns automati-
cally how to perform the task. 

In RL, based on the current observations (𝑠), the agent applies an ac-
tion (𝑎) to the environment, observes the resultant observations (𝑠′) and 
the reward (𝑟) collected from the transition between 𝑠 → 𝑠′. As it pro-
gresses in the training, by testing different control actions and observing 
their outcome through the set of observations, it learns to take actions 
that maximise the reward. The phase where the agent is interacting with 
the system to find out the best way of controlling it is called exploration. 

The action (𝑎) is the control decision. Observations (𝑠) are, for exam-
ple, measurements from sensors that define a state of the system. The 
reward (𝑟) is a function that defines how well it is performing the task. It 
could be, for example, the system’s efficiency. 

A more mathematically centred and detailed description of an RL al-
gorithm can be found in [94] and [95]. However, here a brief description 
of an RL algorithm is performed based on these two references. 

Usually, one is not interested in taking only one best control decision 
but in the best sequence of control decisions to have a strategy, also 
called a policy, that maximises the total collected reward over this 
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sequence. This could be, for example, to maximise the collected points in 
a game. The sum of collected rewards over a sequence of decisions is 
called return (𝑅). Since when performing the sequence of decisions there 
is no knowledge of future rewards, the return must be estimated. Since 
it is an estimation, it only provides an expectation of what could be the 
reward. Then, what one is after, for the current system state (𝑠), is to find 
the action (𝑎) that maximises the expected return 𝑄𝑜(𝑠, 𝑎). 

The optimal action-value function (𝑄𝑜(𝑠, 𝑎)) gives the maximum ex-
pected return for being in state 𝑠 and taking the control action 𝑎 and after 
that following the policy 𝜋. Thus, based on the expected return, the agent 
can construct the action-value function (map from states to expected 
value) and apply a policy to select actions based on their values. For an 
agent, a policy could be to always choose the action that maximises it. 

The action-value function can be approximated by a neural network, 
which is trained to predict the value (𝑄-learning) based on the observa-
tions (𝑠) and action (𝑎). Thus, the training, in this case, is to have a good 
representation of the action-value function to guide the decisions. A de-
scription of this method is found in [95]. Therefore, the function repre-
sentation capability of NNs is used to tackle complex problems where the 
action-value function is highly nonlinear. 

The fact that the agent in a RL framework can learn while interacting 
with the system allows their continuous improvement even after being 
deployed to the real system. In theory this is possible; however, there are 
practical and safety constraints that might undermine this approach, or 
at least not allow it to happen in a reasonable time window to cope with 
the varying nature of the tasks performed by mobile machines. 

A disadvantage of such methods is the fact that the engineer does not 
know what solution to the optimal control problem it will find. It could 
be that it finds clever and optimised solutions that the engineer was un-
able to guess by her/himself, but it could also be that the solution found 
is far from the optimal one. This requires the assessment of the trained 
agent controlling the system to evaluate whether the solution is accepta-
ble. 

There are already examples of the application of reinforcement learn-
ing with a greater focus on energy management. In [96], it is shown the 
use of RL for a hybrid excavator, comparing it to a rule-based approach 
and an ECMS approach. Similarly, in [97], RL based on Q-learning is 
developed and evaluated for the real time energy management of a hy-
brid wheel loader. An approach based on Q-learning with demonstrated 
online learning capability is shown in [98]. In [99], the use of DQN (Deep 
Q-Network) for the mode selection of a multi-chamber actuator in the 
control of an excavator arm is shown. This was also a study that is part 
of the development of this thesis. 
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Another set of applications of RL for mobile machines are found in 
[100] where it is used, based on camera, lidar, and motion and force sen-
sors, to perform the bucket loading in underground mine applications in 
a multi-objective target, including the maximisation of bucket loading; 
in [101], it is trained to control the motion of a forestry crane while con-
sidering the minimisation for energy consumption; in [102], it is used for 
the trajectory tracking control of the motion of an excavator arm aiming 
for autonomous application, where the controller generates the valve 
control signals directly; and in [103], RL is used to adapt for the real 
world conditions of a network trained to control the motion of the actu-
ators of a wheel loader during bucket filling. 

What is observed from these references is the capability of reinforce-
ment learning to learn how to control systems of construction machines 
based on a variety of inputs, which allows the mapping of a system state 
to perform the best actions. Also noticed is their capability to deal with 
multi-objective goals. 

It is also observed in these papers that the development of RL control-
lers usually starts with a pre-training of the agent in a simulation envi-
ronment. Advantages of this approach are avoiding undesirable real-
world consequences; that it can generally be performed at less cost than 
needed to obtain real experience; and that simulations typically run 
faster than real time [94]. 

What is not addressed in depth, for both supervised and reinforce-
ment learning approaches are their application to real construction ma-
chines, the reliability, and safety of such controllers, which is of great 
concern especially in automated applications. 

3.3 Review of the Reliability of Machine Learn-
ing-Based Methods 

What motivates this review is the fact that machine learning-based con-
trollers applied to real physical systems might underperform. In the 
worst case, this leads to unintended accidents. According to [104], acci-
dents may emerge when one specifies the wrong objective function, is not 
careful about the learning process, or commits other machine learning-
related implementation errors. 

According to [75], the machine learning model must perform well on 
previously unseen inputs, not just on those it was trained for. This ability 
is called generalisation and allows them to be deployed to situations that 
they were not exactly trained for. However, a neural network will only be 
as good as the data used to train it [78]. As the author states: “They are 
a technology that is at the mercy of the data”. 
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The concept of ground truth is fundamental for machine learning. It 
is the ideal expected result [105], and the result one would like the model 
to learn and predict. The accuracy of the trained model will depend on 
how close the defined target is to the actual ground truth. A machine 
learning model with high accuracy and high generalisation in the appli-
cation would behave as intended. 

Therefore, two fundamental conditions for supervised machine learn-
ing algorithms to work properly is to have access to the ground truth and 
that the datasets (instances/inputs and labels/targets) used for training 
match with the application. Therefore, since simulation models of phys-
ical systems are only approximations of the real behaviour, the methods 
used in this thesis result in the absence of ground truth and dataset shift. 
This leads to uncertainty in the predictions and in the performance of the 
deployed learned model. 

Dataset shift, also called distributional shift, is a field of study in ma-
chine learning. According to [106], dataset shift happens where the joint 
distribution of inputs (features) and outputs (targets) differs between 
training and application. It is also called by [104] “robustness to distri-
butional shift", and it discusses how to avoid having machine learning 
systems making bad/different decisions when given inputs that are dif-
ferent than which was seen during training. Meaning that one still wants 
to work with the learned model, but there is imperfect and incomplete 
information around it. 

According to [106], the conditions in which the system operate differs 
from the conditions in which they were developed. The author says that 
environments are nonstationary, and sometimes the difficulties of 
matching the development scenario to the application are too great or 
too costly.  

However, the application should still be similar to the training, which 
means that the training data must span the full range of the input feature 
space and also have similar distribution to the application for which the 
algorithm will be used. Therefore, these concepts of dataset shift and ab-
sence of ground truth are fundamental and must be addressed for ma-
chine learning-based methods to generate EMSs. 

In this sense, RL has an advantage over supervised learning due to its 
capability to continue the learning after being deployed to the applica-
tion. This allows it to adapt to differences between simulation and appli-
cation. However, it is not completely free of these issues because it was 
initially trained on a simulation model. Therefore, it can still take wrong 
decisions during the exploration phase after deployment. 
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4 

Case Studies 

Machine learning-based methods to generate EMSs, using neural net-
works, seem to have a great potential to address the complexity of sys-
tems, operation scenarios, and tasks of construction machines. However, 
what is noticed from the literature review is a lack of studies focusing on 
the evaluation of the application of such EMSs to real systems. The two 
case studies developed in this thesis aim towards obtaining experimental 
results for the evaluation of the potential of machine learning-based 
methods for the generation of EMSs for construction machines. 

Case Study I addresses a supervised learning approach. A neural net-
work is trained on control optimisation results from dynamic program-
ming to control the parallel hydraulic hybrid system of a wheel loader. 
The goal is to reduce fuel consumption. It is developed offline from sim-
ulations and applied to the real machine for evaluation. Papers I, II, III, 
and V contain the results and content of this case study. 

Case Study II addresses a reinforcement learning approach. A neural 
network is trained to perform the mode selection of a multi-chamber ac-
tuator to reduce the energy losses of a valve-controlled hydraulic system 
for the actuation of an excavator arm. It is trained in simulation and de-
ployed to the real system for evaluation. Paper IV is related to this case 
study. 

The two case studies also address the potential of applying EMSs de-
veloped in a simulation environment directly in the real machines. 

4.1 Case Study I - Energy Management for a Par-
allel Hydraulic Hybrid Wheel Loader 

The goal of this case study is to demonstrate the expected performance 
of a hybrid construction machine when operating with an EMS devel-
oped based on supervised learning. The selected machine is a parallel 
hydraulic hybrid wheel loader. Its behaviour is simulated with a back-
wards-facing model. A fuel consumption optimisation problem is formu-
lated and implemented in a DP tool for optimisation of the EMS of the 
secondary energy source. An NN is trained on the optimal results for sev-
eral drive cycles to predict the optimised control variable. The NN along 
with additional rules form the EMS (NN-EMS). To increase the 
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robustness and generalisation of the network, safety-critical rules from 
the real machine controller are implemented as constraints to the opti-
misation problem. Additionally, a method hereafter called ‘state sweep’ 
is implemented in the optimisation process to increase the robustness of 
the network to unseen scenarios that might occur in practice. Fuel con-
sumption tests, with a professional operator, were done to evaluate the 
performance of the NN-EMS. The same field tests are performed with 
the conventional machine (non-hybrid mode) and with a rule-based 
EMS (RB-EMS). 

Papers I, II, III, and V are connected to this case study. In Paper I, a 
simulation study shows that the NN-EMS does work in a simulation en-
vironment and has the potential for fuel consumption reduction when 
compared to a RB-EMS. Paper II shows that to generate an NN-EMS that 
is robust in the real application, it is necessary to include safety/control-
critical rules as constraints in the optimal control problem in order for 
the solutions to resemble the operation of the real machine. Paper III 
presents the experimental results of the NN-EMS implementation in the 
machine, while Paper V presents the machine model used for the control 
optimisations and simulations. 

The EMS is developed for the control of the hybrid system while the 
machine is operating in short loading cycles, which has its phases de-
scribed in detail in [107]. Figure 4.1 shows a representation of the cycle. 

 
Figure 4.1  Short loading cycle, e.g., used to load material in a hauler; [III]. 

4.1.1 Machine, Model, and Optimisation 

The machine used to demonstrate and evaluate the NN-EMS is a parallel 
hydraulic hybrid wheel loader. This concept allows kinetic energy recu-
peration when braking with storage in the hydraulic accumulator. The 
hydraulic pump/motor and accumulator form the complementary en-
ergy storage device (CRS). With proper management of the energy recov-
ery and usage, fuel consumption can be reduced. 
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The machine is modelled in a backwards-facing way to allow the use 
of DP to solve the optimal control problem: the optimal split of power 
between engine and hybrid system to minimise the fuel consumption 
along the drive cycles. This is to generate the information on how this 
system should be controlled. It is expected that if the model description 
of the machine behaviour is sufficiently accurate, then the results from 
the control optimisation are a reference for how the real machine should 
be controlled to reduce fuel consumption in this case. 

Figure 4.2 presents the machine concept diagram along with the 
model inputs and outputs, that are used to evaluate the agreement be-
tween model and measurements. As mentioned, the model is described 
in Paper V. 

 
Figure 4.2  Machine concept and model verification procedure; [III]. 

The goal of the model is to describe the accumulator state of charge 
(SOC); engine speed (𝑛𝐼𝐶𝐸) and torque (𝑇𝐼𝐶𝐸); fuel consumption (𝑄𝑓𝑢𝑒𝑙); 

and pump/motor mechanical torque (𝑇𝑃𝑀), as functions of model inputs 
and the control action (𝜖𝑃𝑀). The model inputs are machine speed (𝑣), 
traction force (𝐹), transmission gear (𝑖𝑡𝑟𝑎), work functions power (𝑃𝑊𝐻), 
and brake pedal position (𝑥𝐵𝑟𝑎𝑘𝑒). 

The backwards-facing model has, essentially, the drive cycle power 
consumption as input. This means that the cycle productivity (t/h) is pre-
scribed. In other terms, the amount of work performed and the time 
taken is fixed for each cycle. What is obtained with the control optimisa-
tions with this type of model is information of how this same cycle could 
be performed with less power consumed, meaning less fuel consumed in 
this case. This also means that the productivity of the machine operating 
under the developed NN-EMS should have similar productivity to the 
recorded cycles. 
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The model agreement is performed as shown in Figure 4.2. Measured 
cycle inputs (𝑣, 𝐹, 𝑃𝑊𝐻 , 𝑖𝑡𝑟𝑎 , 𝑥𝐵𝑟𝑎𝑘𝑒) and control action (𝜖𝑃𝑀) are applied 
to the model, and the measured and simulated variables are compared. 
Figure 4.3 shows their agreement for one short loading cycle. 

 
Figure 4.3  Simulations and measurements agreement. a) Accumulator 
state of charge; b) Engine speed; c) Engine torque; d) Engine fuel rate; [III]. 

Although the model is deliberately simplified to minimise the compu-
tational cost when performing the optimisations, the main characteris-
tics of the real system are described. For this reason, the model is con-
sidered to provide a sufficiently accurate description of the machine be-
haviour for the intended purpose of generating information of how the 
real machine should be controlled. A better model would have a more 
accurate description of the machine behaviour. This would probably re-
sult in a better NN-EMS for the real machine, however the goal here is to 
demonstrate the potential of the method to generate EMSs. 

Given the model agreement, it is possible to use this model to perform 
control optimisations to gather information on how this system should 
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be controlled in practice. The optimal control problem, adapted from the 
formulations provided in [54], [108], and [109], can be formulated as: 

 
𝑚𝑖𝑛 {𝑔𝑁(𝑥𝑁)   𝑔𝑘(𝑥𝑘, 𝑢𝑘)

𝑁− 

 

} , 𝑘   0,1, … ,𝑁 (4.1) 

 𝑥𝑘+  𝑓𝑘(𝑥𝑘 , 𝑢𝑘) ,  (4.2) 

 
𝑢𝑘  {

𝑢𝑘  𝑖𝑓 𝑢𝑘,𝑟𝑢𝑙𝑒  0

𝑢𝑘,𝑟𝑢𝑙𝑒 𝑖𝑓 𝑢𝑘,𝑟𝑢𝑙𝑒 ≠ 0
 (4.3) 

 𝑥𝑘 ∈ 𝑋𝑘 ⊆ ℜ
  (4.4) 

 𝑥  𝑥𝐼𝐶  (4.5) 

 𝑥𝑁 ∈ 𝑇 ⊆ ℜ
  (4.6) 

 𝑢𝑘 ∈ 𝑈𝑘  ⊆ ℜ
  (4.7) 

where, 𝑔𝑁 is the final cost, 𝑔𝑘 is the additive cost function, 𝑓𝑘 is the func-
tion describing the dynamic system, and 𝑢𝑘 is the control action that can 
be any value from 𝑈𝑘, although it is 𝑢𝑘,𝑟𝑢𝑙𝑒 when a control action from a 

deterministic control rule takes place. 𝑥𝑘 is the set of state variables, 𝑁 is 
the final time step for the discrete-time problem, and 𝑇 a target set as 
final state constraint. Therefore, the optimisation process runs as de-
scribed in the referred papers, except when a deterministic rule applies, 
at which moment only the control variable 𝑢𝑘,𝑟𝑢𝑙𝑒, instead of every pos-

sible control action, is applied/tested from every discretized-state. It 
forces the optimisation algorithm to find the best solution for the whole 
problem given that at some parts of the decision-making process the con-
trol decisions were constrained. This process can be viewed as an control 
optimisation with intermediated control constraints. Further details on 
the effect of that in the optimisation results are provided in Section 4.1.3. 

4.1.2 Method 

Figure 4.4 presents a diagram with the activities performed along the 
method, from the development of the NN-EMS to the tests. 

NNs can only output certain results if they were trained for it. If not 
enough examples are provided, or if they do not cover the whole opera-
tion envelope of the machine, it is likely that the network will behave in 
an unexpected way when it receives an unknown input. 
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Figure 4.4 Representation of the process to obtain an NN-EMS from dy-
namic programming and neural networks. 

Loading cycles in construction machines, despite being usually repet-
itive, have great variation, which can be observed in the measured tra-
jectories in [44], and on machine and actuator speed profiles in [110]. 
Therefore, for the NN to learn how to control the system a significant 
number of examples, also called instances, is required. One instance is 
the tuple of attributes/input features and target. That is why the main 
input to the process is a large number of representative drive cycles. A 
brief description of each step in the process is provided in the sequence. 

Step a: With the machine model to hand, drive cycles are simulated 
using DP to find the optimal control decisions that minimise the objec-
tive function while completing them under the set of control and state 
constraints. The optimisation results will contain the optimal trajectories 
of machine states and optimal control decisions. 

Step b: Variables that affect the decision-making process are selected 
from the optimisations results to be the network input features to map 
the target. The target is the desired control variable to be predicted by 
the network. The dataset containing input features and target is used for 
the network training. When training, it learns the nonlinear relationship 
between features and target. The trained network is the causal controller 
that predicts the optimised control decisions in the machine.  

Step c: The network is implemented in simulation alongside addi-
tional control rules to form the NN-EMS, to evaluate its performance, 
and to confirm its correct operation. 

Step d: The NN-EMS is implemented and tested in the machine. 

4.1.3 Control Optimisation (Step a) 

The DP tool presented in [54] is used to solve the discrete-time optimal 
control problem with final state constraints. The optimisation is control-
constrained by deterministic rules, as shown in equations (4.1) to (4.7). 
In the controller of a real machine, there will be safety-critical functions 
(e.g., braking), and possibly other simpler control actions, that cannot be 
prone to neural network miss-predictions, or there is no need to train the 
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network. These cases can be addressed with deterministic control rules. 
Therefore, the final controller is a combination of rules and a neural net-
work. 

If the deterministic control rules are not added as constraints to the 
control optimisation problem the optimisation results will not resemble 
what the network finds in practice. The outcome of the control decisions 
in practice leads to a different machine behaviour than what the network 
was trained to achieve. As a result, the network will underperform be-
cause it encounters situations it was not trained for. 

This is addressed in Paper II where it is shown, with simulation re-
sults, the influence on the control optimisation results between con-
straining it or not with the braking rule. The constrained and uncon-
strained optimisation results for the trajectory of the accumulator state 
of charge (SOC) for several drive cycles are shown in Figure 4.5. It allows 
a qualitative assessment of the deviation between the optimal control 
problem solutions for each case. 

 
Figure 4.5  Distribution of optimal SOC for the constrained and uncon-
strained control optimisation problem for individual short loading cycles. 
a) Unconstrained; b) Constrained; [II]. 

In general, the solutions seem similar, and the differences are mostly 
located towards the final half of the cycle, which happens to be where 
most of the braking actions occur because the machine is approaching 
the hauler for the bucket unloading phase. However, if analysing in more 
detail it is noticed that differences are significant. 

Since the braking rule overwrites the control decisions from the net-
work, the braking parts are removed from the training set. Figure 4.6 
shows a comparison between the SOC for the constrained and uncon-
strained cases for a number of cycles. If there is no significant difference 
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between them, when plotted against each other they should lie close to 
the diagonal. 

Even after removing the braking parts, there is still a significant devi-
ation from the diagonal (Figure 4.6b), meaning that there are significant 
differences in the solution to the optimal control problem, even outside 
the braking actions. The presence of control constrains at some parts of 
the cycle affect the optimal solution for the whole drive cycle. 

 
Figure 4.6  Optimal SOC for the constrained vs. unconstrained control op-
timisation problem for a number of short loading cycles. a) Including the 
constrained parts; b) Excluding the constrained parts; [II]. 

In essence, not considering the deterministic rules in the optimisa-
tions would result in a network trained for something different than what 
it will be interacting with in the application. In other terms, the inclusion 
of the rules reduces the dataset shift between training and application. 
This is confirmed when networks trained on data from each case are 
placed to control the machine. 

Figure 4.7 shows the error (RMSE) between the control variable pre-
diction (𝜖𝑃𝑀) and optimal control variable, for two networks controlling 
the machine in simulation. One network is trained on a dataset from un-
constrained control optimisations (UN) and the other on a dataset from 
constrained control optimisations (CN). The RMSE is also calculated for 
the SOC, allowing the assessment of the error in the state variable as a 
consequence of wrong control variable predictions. 

The average error on the control variable (𝜖𝑃𝑀) and state (𝑆𝑂𝐶) are 
smaller for the NN-EMS trained on the dataset from constrained control 
optimisation (CN). These simulation results indicate that the hypothesis 
that one should consider required control rules to constrain the optimal 
control problem to achieve a better representation of what happens in 
reality holds true, otherwise the NN-EMS will underperform. 
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Figure 4.7  𝜖𝑃𝑀 and SOC RMSE comparison between optimal solution and 
EMSs for the constrained (CN) and unconstrained (UN) problems. a) 𝜖𝑃𝑀 
RMSE; b) SOC RMSE; [II]. 

The optimised control decisions from the optimisations must be ana-
lysed to make sure they make sense and to understand what type of con-
trol action must be learned by the network and applied to the real system. 
The optimisation results also provide information regarding the effi-
ciency of that machine concept and how it should be controlled. Com-
monly, it provides non-intuitive ways to control the system to maximise 
its efficiency. The engineer can learn about the control of the system un-
der development. 

One expected advantage of the method to generate the EMS studied 
here is that the engineer does not need to design the whole controller for 
the machine since the network should learn that from the optimisation 
results. 

It must be emphasized that the goal is for the network to learn when 
a control action must take place and its intensity. For the present system, 
this means when and how much to charge the accumulator and when, 
and how much to use the stored energy to drive the machine. Optimisa-
tion results for one short loading cycle are presented in Figure 4.8. 

At around 5 seconds in Figure 4.8a, at point 1, the machine is loading 
the material from the pile. Therefore, the stored energy is discharged to 
avoid high torque converter losses. It also shows the recovery of kinetic 
energy and its reuse at point 2, when changing direction from the hauler 
to the pile of material, or vice-versa. It also shows, at around 8 and 20 
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seconds, the use of stored energy when leaving: the pile, point 1; and the 
hauler, point 3. This is mainly to overcome the torque converter losses at 
high torque and low-speed situations. Figure 4.8b shows the relationship 
between pump/motor operation and the hybrid system state, which 
means pumping to brake and recovering kinetic energy (Brake reverse – 
REV, or forward FWD), motoring to drive and reuse the stored energy 
(Drive reverse – REV, or forward FWD). These actions are confirmed in 
Figure 4.8c through the exchange of hydraulic potential energy and ki-
netic energy. 

 
Figure 4.8  Optimisation result for one short loading cycle. a) Machine 
speed and accumulator SOC; b) Hybrid system drive state and pump/mo-
tor operation; c) Kinetic and hydraulic potential energy; [III]. 

It is the underlying information in the optimisation results, about how 
much and when to charge or discharge the accumulator, that is the ob-
jective for the neural network to map from the input features. Naturally, 
the drive styles of each operator, types and conditions of materials, dis-
tances between loading, turning and unloading points, and randomness 
in the interactions with the ground and loaded material will result in a 
high variation in the load cycles. Therefore, as many operation scenarios 
as possible must be covered to have an EMS that is robust to this varia-
tion in the application. Even though, the network generalises the predic-
tions when training, it is expected that it can learn general optimised 
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control solutions that perform well in the covered scenarios and are ro-
bust to unseen scenarios. 

To achieve this robustness, “state sweeping” was implemented. This 
process is described in Paper III, but it essentially consists of also ac-
counting for the solutions for short optimal control subproblems from 
within each optimised drive cycle. This process generates more infor-
mation on how to control the system when it deviates from the optimal 
trajectory, increasing its robustness when being in such situations. 

One example of SOC trajectories obtained with this process is shown 
in Figure 4.9, where it is indicated the starting points (𝑡, 𝑆𝑂𝐶(𝑡)) of the 
subproblems and the respective optimal state trajectory solutions. 

 
Figure 4.9  Example for a short loading cycle of the accumulator SOC be-
haviour when applying state sweep in the optimisations; [III]. 

To optimise several drive cycles, including deterministic rules as con-
straints, and applying state sweep should result in a dataset that contains 
sufficient, representative, and useful information to train a network that 
is expected to perform well and be robust in practice. 

4.1.4 Dataset, Network, and Training (Step b) 

About 100 short loading cycles were optimised individually to force the 
accumulator charge sustaining constraint at the end of each cycle. These 
cycles were recorded from several operators, loading different types of 
material, and in different machine modes (hybrid and non-hybrid). This 
makes the trained NN more robust for the scenarios found in practice. 

No sensitivity analysis was performed to evaluate the impact of the 
number of cycles used in the development on the performance of the 
EMS in the application. However, it is not just the number of cycles that 
matters but also how well they cover the possible operation scenarios. 
This means the drive cycles used in the process should result in training 
points that cover the whole range of the input features used by the net-
works. At the same time, rare events should not have too few points, in 
comparison to more likely events, for the network to neglect them during 
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training. In other words, a similar spread of points wouldn’t make the 
network biased towards the more likely operation scenarios. This topic 
is addressed in Chapter 5. 

The network used in this case study is a regression model that learns 
to map the input features to the target output – in this case, the optimal 
control action. The network architecture was determined iteratively aim-
ing to reduce the number of neurons and hidden layers while maintain-
ing high accuracy. A feed-forward multi-layer network, with tangent sig-
moid neurons in the hidden layers, and a linear neuron in the output 
layer was selected since they are a standard architecture for regression 
problems [78]. 

Several training runs were performed for networks with different 
numbers of layers and neurons. Although not being the purpose of the 
thesis to find the best machine learning model, the objective of this iter-
ative process was to find a small but sufficiently capable network model.  

An important aspect that drives the use of a smaller network is the 
fact that they need to be implemented in the machine computer that usu-
ally has limited computational power. The hybrid system in the demon-
strator used in this case study was controlled from a rapid control proto-
typing PC. Therefore, the size of the network wasn’t a big constraint. 
However, this is a topic to be further considered in the future industrial-
isation of this type of EMS. 

The selected structure was a network with three hidden layers, 25 
neurons in each layer, and tangent sigmoid activation functions. The out-
put has one neuron with a linear activation function to predict the nor-
malised value of the pump/motor torque (𝑇𝑃𝑀). Although in the optimi-
sations the control variable is the displacement setting (𝜖𝑃𝑀), the net-
work is trained to predict the torque which is transformed in a displace-
ment setting, as shown in Figure 4.11. 

The objective is to provide the minimum number of features to the 
network. This is still a task for the engineer to perform. It requires 
knowledge of the machine operation to identify which variables affect the 
system efficiency, can be measured or generated in the machine, and 
seem to have a strong correlation to the target control variable. The input 
features (𝑥𝑁𝑁) are 

 
𝑥𝑁𝑁(𝑡)  [𝑣, 𝑖𝑡𝑟𝑎 , 𝐾𝐷, 𝑆𝑂𝐶, 𝑥𝐴𝑐𝑐𝑒𝑙 , 𝑛𝐼𝐶𝐸], (4.8) 

and the target (𝑇𝑃𝑀,𝑁𝑁) is 

 
𝑇𝑃𝑀,𝑁𝑁(𝑡)  𝑇𝑃𝑀

𝑜 (𝑡), (4.9) 

where 𝑣 is the machine speed, 𝑖𝑡𝑟𝑎 transmission gear, 𝐾𝐷 is the kick-
down signal, 𝑥𝐴𝑐𝑐𝑒𝑙  the accelerator position, 𝑛𝐼𝐶𝐸 the engine speed, 𝑆𝑂𝐶 
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the accumulator state of charge, and 𝑇𝑃𝑀
𝑜  the optimal pump/motor 

torque. 
The input features and target are shifted by one time step. That is be-

cause in simulation, or in the real application, the current measured var-
iables are used to predict the control action for the next time step. 

As presented in Paper I, when simulating the system under control of 
the network, drive cycle data (𝑐𝑖), state variables from the previous time-
step (𝑥𝑖− ) and control signals (𝑢𝑖) are provided as inputs. The model 
computes the new state variables (𝑥𝑖) and dependent variables (𝑦𝑖). From 
these outputs, the features are calculated for the neural network (NN), 
which then calculates the new control signal that is used in the next time-
step. This process is shown in Figure 4.10. 

 
Figure 4.10  Implementation of the neural network as the controller in 
simulation; [I]. 

The network was trained on optimisation results from about 90 drive 
cycles and tested on the remaining drive cycles. The state sweep, de-
scribed in Section 4.1.3, was applied to all cycles. As discussed in Paper 
II, the parts of the cycle where the control action is determined by a de-
terministic rule were removed from the training set. The reader is re-
ferred to Paper III, for further results on the training of the network. 

4.1.5 Implementation (Step c) 

In the implementation of NN-based EMSs, all safety-critical functional-
ity should be kept as deterministic rules while the network should only 
predict the optimised control reference in non-safety-critical situations.  

For the present case study, the additional rules added to ensure a cor-
rect and safe operation of the NN-EMS are summarised as follows: 

𝑥 𝑖

𝑥 𝑖− 𝑐 𝑖 𝑢𝑖

Simulate time-step

Inputs
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New time-step

𝑦 𝑖



On ML-Based Control for Energy Management in Construction Machines 

44 

• Predictions are bounded to the limits of the control variable; 

• Predictions that would result in accumulator depletion or over-

charging are not allowed to reach the system; 

• The control signal is not applied to the hybrid system if the ma-

chine is not in a driving mode; and 

• The torque reference is calculated by a map when the operator 

requests a braking action (𝑇𝑃𝑀,𝐵𝑟𝑎𝑘𝑒). 

The simplified block diagram of the NN-EMS is shown in Figure 4.11 
where 𝐷𝑃𝑀 is the pump/motor displacement, Δ𝑝 the pressure drop over 
it, and 𝑇𝑃𝑀,𝑁𝑁 the predicted torque. 

 
Figure 4.11  Structure of the rule- and neural network-based EMS; [III]. 

4.1.6 Test Results (Step d) 

In practice, these machines perform a number of different drive cycles, 
however only short loading drive cycles (Figure 4.1) were used to train 
the network and are the only type of drive cycle tested.  

Despite that the network was trained with data that originated from 
the recordings of drive cycles from several operators, only one profes-
sional operator drove the machine in all tests. This prevented the evalu-
ation of the NN-EMS performance under different drive styles.  

Two EMSs were tested: rule-based (RB-EMS) and neural network 
(NN-EMS). RB-EMS is a rule-based strategy developed by the industrial 
partner when developing and testing the demonstrator. NN-EMS is the 
one developed with the method presented in this case study. To have a 
baseline for comparisons, tests with a conventional machine (Conv) were 
also recorded. The conventional mode is run with the same machine but 
with the hybrid system in idle mode. 

Four tests were performed for each of the three modes, where each 
test consists of one hauler loaded with four buckets – therefore, four 
short loading cycles per test. Productivity (t/h) and fuel efficiency (t/L) 
were the chosen parameters for evaluation. For that, loaded material, 
fuel consumption, and cycle time were recorded to assess the machine’s 
performance. A picture of the tests is shown in Figure 4.12. 
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Figure 4.12  Picture from the tests; [III]. 

Operation of the NN-EMS in the Application 

Figure 4.13 shows the operation of the machine for one short loading cy-
cle while controlled by the NN-EMS. 

 
Figure 4.13  Operation of the NN-EMS in one short loading cycle. a) Ma-
chine speed and accumulator SOC; b) Hybrid system drive state and 
pump/motor operation; c) Kinetic and hydraulic potential energy; [III]. 
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Figure 4.13a shows the discharge of the stored energy while loading 
the material (point 1). It also shows the recovery of kinetic energy and 
reuse of the stored energy when changing direction at point 2 and the use 
of stored energy when leaving the hauler after point 3.  

This behaviour is close to the one obtained from the optimisations, as 
shown in Figure 4.8. This shows that the network learned and imple-
mented in practice the optimised control decisions. These results provide 
evidence to confirm the expectation that the networks can implement di-
rectly in practice what they learned from the optimisation results from 
simulation. 

Performance Comparison Between EMSs 

As mentioned in Section 4.1.1, the productivity of the machine is not af-
fected by the optimisation control decision. However, when controlled 
by the NN-EMS the machine might have different productivity, which 
could make it operate outside the conditions from which the network was 
trained. Therefore, it is important to evaluate how much the drive cycle 
is changed due to the use of the NN-EMS. If the NN-EMS significantly 
changes the machine behaviour, this should be seen in the drive cycle. In 
other words, the dataset shift between training and application would 
make the controller not operate as intended. Figure 4.14 presents the 
machine speed, SOC and variation in normalised cycle time and distance 
travelled for the RB-EMS and NN-EMS. 

The cycles with the NN-EMS were similar to the cycles with the RB-
EMS. The drive cycle is not significantly affected by the proposed EMS; 
it had a similar cycle performance. Therefore, at least concerning vehicle 
speed, cycle time, and state of charge, the NN-EMS is operating in simi-
lar conditions to what it was trained for. 

Productivity and fuel efficiency are presented for the three operation 
modes in Figure 4.15. Each point represents one loaded hauler. 

Lower productivity was observed for the hybrid modes. The reasons 
are explained in Paper III. However, the efficiency of the hybrid modes 
(RB and NN-EMS) is better than that of the conventional machine due 
to the hybrid system’s capability to recover kinetic energy and reuse it. 
The NN-EMS resulted in better fuel efficiency for similar productivity if 
compared to the RB-EMS. 

The results demonstrate that the NN-EMS performs similarly to the 
DP-EMS, which is the optimal one in simulation. Therefore, the neural 
network was able to learn the DP decision-making process and imple-
ment it in practice. The implementation of optimised control decisions 
leads to higher fuel efficiency in practice if compared to the RB-EMS. The 
reader is referred to Paper III for more results. 
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Figure 4.14  Comparison between operations of the RB-EMS and the NN-
EMS. a) and c) Machine speed and accumulator SOC for the RB-EMS; b) 
and d) Machine speed and accumulator SOC for the NN-EMS; c) Average, 
maximum and minimum cycle time; f) Average, maximum and minimum 
cycle distance; [III]. 

 
Figure 4.15  Performance parameters measured from the tests. a) Produc-
tivity; b) Fuel efficiency; [III]. 
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4.1.7 Discussion 

The objective of this case study was to demonstrate the implementation 
of an energy management strategy based on neural networks. More spe-
cifically, demonstrate that a controller can be learned from control opti-
misation results, be directly implemented in the real machine, and yield 
better machine performance than rule-based EMSs. Despite showing 
that, there are a few considerations to be made regarding the NN-EMS 
and its implementation. 

For this case, the RB-EMS and the NN-EMS structures are relatively 
simple. Each strategy could be further developed to yield even better re-
sults. However, considering a more complex hybrid construction ma-
chine, the RB-EMS strategy might become significantly more difficult to 
be derived, implemented, and tuned. The NN-EMS would have the ad-
vantage to handle more input features due to its function representation 
capability. 

It is expected that RB strategies would require a significant amount of 
development time for more complex systems. At the same time, this RB-
EMS will potentially deviate even more from an optimal EMS. On the 
other hand, it is expected that NN-based strategies would not require as 
much development time and would have a greater potential to not devi-
ate as much from optimality. 

At the same time, another goal is to reduce the burden on the engineer 
to interpret the results from DP when deriving RB-EMSs, since the net-
work can learn that, this burden is reduced. The downside is that even if 
the NN learns the DP decision-making process it would still be difficult 
to interpret the decisions taken. A shift in time dedicated to each activity 
is also noticed. When developing an NN-EMS, less time is dedicated to 
the development of the control knowledge, since that is extracted by the 
network; instead, time is dedicated to evaluating the outcomes of the 
learned strategy. 

The results also indicated a robustness of the network to differences 
between the training domain and application domain. This is in part due 
to the inclusion of control rules into the optimisation process, the variety 
of cycles used to train it, and in part due to the state sweep. However, it 
is necessary to extend the covered range of operation scenarios to evalu-
ate if similar robustness can be achieved. A deeper analysis of this topic 
is provided in Chapter 5. 

There can be a discussion if the number of operators used in the tests, 
the number of drive cycles, the variation in types of loaded material, and 
so on, were sufficient for a broad qualitative assessment of the method. 
With that in mind, it is understood that the obtained test results serve as 
a proof of concept regarding the feasibility and potential of NN-based 
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controllers for energy management in construction machines. However, 
future tests covering a broader range of operational conditions would 
provide additional resources for an assessment regarding the potential 
and feasibility for such controllers to be implemented in machines reach-
ing the market. 

4.2 Case Study II – Multi-Chamber Actuator 
Mode Selection Through Reinforcement 
Learning 

In this case study, it is demonstrated through simulation and experi-
mental results the training and implementation of a reinforcement learn-
ing-based (RL) controller for the mode selection of a multi-chamber hy-
draulic actuator. The actuator is part of a multi-actuator load sensing ar-
chitecture driven by a single pump. This system is used to drive the boom 
and stick functions of an excavator arm.  

The selection of different modes on the multi-chamber actuator al-
lows the reduction of resistive losses in the control valves caused by un-
matched pressure levels between actuators. A Deep Q-Learning (DQN - 
[112]) agent is created to learn how to select the modes to minimise the 
system energy losses. 

In comparison to the first case study, presented in Section 4.1, this 
case study evaluates a technique that performs the optimisation of the 
control decisions while it learns the strategy. It also has the inherent con-
ditions for continuing the training after deployment, with minor changes 
to the training algorithm. 

This case study is related to papers IV and VI. The concept of the stud-
ied system is presented and theoretically evaluated in Paper VI, while 
Paper IV presents the study and results regarding the development of the 
RL agent and its performance in simulation and experiments. 

4.2.1 System Description 

In a multiple hydraulic actuator system, the load on each actuator results 
in different pressure levels. If the actuators belong to a load sensing ar-
chitecture with pressure compensation valves, the supply pressure is reg-
ulated to the highest pressure required by the actuators. This causes a 
mismatch between pressures on the other actuators and the pump pres-
sure, which is compensated by throttling in the valves. 

In Paper VI it was shown that the reduction of such losses can be 
achieved by using a multi-chamber actuator in one of the functions. The 
hydraulic circuit diagram of the suggested system, where Load 2 is driven 
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by a multi-chamber actuator, is show in Figure 4.16. An extended discus-
sion on this system architecture is given in Paper VI. 

 
Figure 4.16  Hydraulic system architecture of the valve-controlled pres-
sure-compensated load sensing system with a multi-chamber actuator. 

The combination of different chambers defines possible actuator 
modes to be used. The selection of different actuator modes allows the 
modulation of the resultant pressure from the load to make 𝑝𝐿 ,2 similar 

to 𝑝𝐿 , . This reduces the throttling losses in the system. This pressure 

modulation is illustrated in the flow pressure diagrams in Figure 4.17. 
The multi-chamber actuator adds another variable that must be con-

trolled. In this concept, the mode selection acts as a motion enabler, 
which is still controlled by the proportional valve. Therefore, the control 
goal for the multi-chamber actuator is to select a mode that enables the 
requested motion to be completed while minimising the resistive control 
losses. 

Although not dealing with energy recuperation or energy storage, the 
mode selection is performed to minimise the energy losses in the system. 
Therefore, this control problem can still be interpreted as being an 
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energy management problem. At the same time, the focus here is on the 
evaluation of the method to generate an EMS and not on the system con-
cept. It must be emphasized that this method could also be applied to 
other control problems, including the one presented in Case Study I. 

 
Figure 4.17  Flow-Pressure diagram, effect of mode selection on valve con-
trol losses in a load sensing system with two actuators. a) The case with two 
conventional actuators; b) The case where one is a multi-chamber actuator. 

The loads and state conditions that such systems operate under are 
highly variable and cover a broad range. An analytical solution, or a so-
lution based on rules, to determine the control action that results in re-
duced energy losses is not trivial and can be difficult to find. Therefore, 
the objective of this case study is to demonstrate that RL can also be used 
to find the EMS to control hydraulic systems of construction machines. 
This case study is about the selection of modes of multi-chamber actua-
tors to reduce resistive control losses. 

RL can be applied directly to the real system for training. However, 
this case study takes a similar approach as the previous one. A model of 
the real system is used for the agent to learn the EMS by interacting with 
it. The study is limited to only training the agent in the simulation envi-
ronment and deploying it to the real system for experimental evaluation. 

4.2.2 Modes, Model, and Control Structure 

The multi-chamber actuator is connected to three supply lines (A/B/R). 
Most of the possible combinations of chamber areas are ruled out. The 
reasons for that are described in Paper VI. The modes used in this study 
are given in Table 4.1, Only mode 1 is not an agent’s decision, as it is im-
plemented as a rule for safety reasons. Modes are ordered in a decreasing 
force capacity. 

The model of the physical system is developed in the multi-domain 
system simulation tool HOPSAN [113]. The model describes the motion 
of the boom and stick as functions of the motion of the hydraulic 
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actuators. It also models the behaviour of pressures and flow rates in the 
hydraulic system. The verification of model agreement with experiments 
is described in [99]. Both the controller and training algorithm were im-
plemented in Simulink [112]. 

Table 4.1  Multi-chamber actuator modes used in the case study. 

Mode A B R Mode A B R 

1 - - - 4 A BD C 
2 AC BD - 5 AB D C 
3 ABC D - 6 C BD A 

It is a forwards-facing model, which makes the performance of the 
load cycle not be prescribed as in Case Study I. Therefore, the control 
decisions of the RL agent affect the power losses of the system and how 
fast or slow the motion is performed. This allows the RL agent to find a 
trade-off between selecting a mode that is efficient but results in a slow 
motion or finding a mode that is less efficient but is faster. 

Aside from the agent, the controller also contains other control and 
safety-critical rules. The motivation to include rules along with the agent, 
which is a neural network, are similar to the ones for the previous case 
study. Some situations cannot be prone to miss-predictions of the net-
work and must be handled separately. Since the best control solution 
must account for these situations, these rules must be placed along with 
the agent when it is learning how to control the system.  

In this case study, the training of the agent was only performed in 
simulation. However, in the case of letting the agent to train in the real 
system, there would be additional rules to ensure that the exploration 
phase, when the agent is interacting with the system to learn how to con-
trol it, is performed safely. 

An overview of the control structure is shown in Figure 4.18. The re-
ward branch of the agent is only used during the training phase. 

Paraphrasing [95] for the present control problem: The agent inter-
acts with the environment, in a sequence of actions, observations, and 
rewards. At each time-step (𝑡) the agent observes the observations 𝑠(𝑡), 
selects an action 𝑎(𝑡) from the set of modes (Table 4.1) and applies it to 
the environment. It observes the new observations 𝑠(𝑡  1) and the re-
ward 𝑟(𝑡). Based on the reward it updates the parameters of the network 
to improve the mode selection the next time it encounters a similar load 
and state condition. The agent tries to maximise the collected reward. A 
description of the network and its function is presented in Section 4.2.3. 

In an RL framework, everything that is not the agent is the environ-
ment the agent is interacting with. Therefore, it is fundamental to make 
the environment in simulation as close as possible to the real environ-
ment. This includes the additional rules for safety or other situations and 
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a sufficiently representative model of the physical system. This should 
reduce the differences between the development environment and appli-
cation environment. If the differences are small, it is expected that the 
agent can control the real system despite training in simulation. 

 
Figure 4.18  Structure of the proportional valve and mode selector con-
troller and picture of the test bench. 

A detailed description of the added rules for this case can be found in 
Paper IV. They mainly prevent modes that cannot drive the load to be 
applied in the system, handle mode 1, and the boom lowering motion, 
which is performed with a predefined mode. 

As mentioned, the RL agent is responsible for the mode selection to 
enable the motion, another P controller ’mimics’ the machine operator 
controlling the proportional valves. The P controller is what controls the 
boom motion. 

4.2.3 Learning Setup for the Agent 

A Deep Q-Learning (DQN) agent was selected because it allows the use 
of continuous variables as input features (measurements from the sys-
tem) and discrete variables as output (modes). 

The agent has a neural network that estimates the value of taking a 
certain action given the current observations (input features). The value 
is an estimation of the sum of the reward that the agent can collect over 
a future time horizon. At each agent’s control time step, the value for tak-
ing an action is calculated and a greedy function selects and implements 
in the system the action with the highest value. In other words, the action 
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that would lead to the best performance, according to the reward func-
tion. 

The training algorithm makes sure that some exploration happens to 
ensure a search for decisions that yield a higher reward. If exploration 
doesn’t happen, the agent would only exploit the ‘best’ decision found. In 
other terms, the exploration acts as an incentive for the agent to search 
for the global optimal solution and not converge to a locally optimised 
solution. The reader is referred to [95] and [112] for a detailed descrip-
tion of the type of agent and training algorithm. 

This agent (neural network and greedy function) is a non-linear map 
between the multi-dimension space of input features (pressures, speed, 
position, …) and the optimised action (modes). Each agent action corre-
sponds to one mode (Table 4.1). The structure and parameters of the net-
work are presented in Table 4.2. 

Table 4.2  Architecture of the action-value network. 

Layer Size 

Feature inputs (observations) 9 features 
Fully connected with ReLU activation function  70 neurons 
Fully connected with ReLU activation function 35 neurons 
Fully connected with linear activation function (actions’ value) 5 neurons 

It is also a multi-layer feed-forward neural network. Despite the fact 
that the name of the agent refers to a deep network (several hidden lay-
ers), in this study, a shallow network with only two hidden layers was 
sufficient to encode the knowledge on how to control the system. 

Only variables that can be measured in the system or extracted from 
the controller structure were used as observations (𝑠), which are the in-
put features for the network. They are, 

 
𝒔(𝑡)  [𝑎, 𝑢2, 𝑝𝐴, 𝑝𝐵, 𝑝𝐶 , 𝑝 , 𝑝𝐿 , , 𝑣, 𝑥], (4.10) 

where 𝑎 is the previous action, 𝑢2 is the proportional valve control signal, 
𝑝𝐴−𝐵−𝐶 are the chambers’ pressures, 𝑝  is the supply pressure, 𝑝𝐿 ,  is the 

load sensing pressure for the conventional actuator, 𝑣 the actuator speed, 
and 𝑥 the actuator position. 

The reward function is composed of three terms, 
 

𝑟  𝐾 𝑟 𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝐾2𝑟𝑃𝑜𝑤𝑒𝑟  𝐾3𝑟 𝑤𝑖𝑡𝑐ℎ (4.11) 

The velocity term (𝑟 𝑒𝑙𝑜𝑐𝑖𝑡𝑦) penalises the agent if boom doesn’t move 

with a minimum velocity. This encourages the agent to learn to meet a 
minimum control performance requirement. The power loss term 
(𝑟𝑃𝑜𝑤𝑒𝑟) is a penalty based on the hydraulic system pressure compensa-
tion losses to encourage the agent to find a mode that makes the motion 
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be performed more efficiently. The switch term (𝑟 𝑤𝑖𝑡𝑐ℎ) penalises the 
agent for frequent mode switching. A detailed formulation of the terms 
𝑟𝑖 is presented in Paper IV. 

What this reward function highlight is the fact that the optimisation 
objective can be composed of several goals. This does not mean that the 
task of formulating the reward function is simple. The weights between 
the terms (𝐾𝑖) also play a guiding role in what the agent learns. They can 
be tuned to achieve the desired control behaviour. 

Table 4.3 presents the twelve load cases used during training and test-
ing. Other training parameters can be found in Paper VI. 

Table 4.3  Load cases and task used for training the agent. 

Load cases and task Value 

Initial position [m] 0.10  0.02𝑅 
Final position [m] 0.40  0.05𝑅 
External load [kg] [40 80 120 160 200 240] 
Load 1 load sensing pressure 𝑝𝐿 ,  [bar] [60 100]  ±  3𝑅 

Load 1 flow rate 𝑄  [lpm] 10 

The agent is trained to lift the boom, under twelve different load cases, 
from a bottom position to an upper position. The model is not a perfect 
representation of the real system. Therefore, to increase the agent’s ro-
bustness to the real application, randomisation (𝑅 – between 0 and 1) 
was added to the load cases and initial and final positions. Noise was also 
added to all the measured variables in the simulation. 

In an excavator application, the external load would not be constant, 
there wouldn’t be an initial and final position, there would be actuation 
in the four quadrants of force-speed directions, and more actuators are 
used simultaneously. As a consequence of the used test bench, the con-
trol problem that the agent faces is considerably different from that of an 
excavator operation. However, it is still a challenging control problem, it 
has the same implementation challenges as there would be for a con-
struction machine, it has similar safety requirements, and the hydraulic 
system is similar to that of a mobile machine. Therefore, the objective of 
evaluating the capability of the RL-based method can still be achieved 
with this test bench and load cases. 

4.2.4 Results 

The trained agent was tested in simulation for all twelve load cases to 
evaluate its performance. First, to see if it learned to move the load from 
start to finish, and second, to see if it could learn to do so with modes 
that result in lower energy losses. The energy loss (𝐸𝑙𝑜  ) is calculated 
with equations (4.12) and (4.13). 
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𝑃𝑙𝑜   𝑃𝑙𝑜  ,  𝑃𝑙𝑜  ,2  |𝑄 (𝑝  𝑝𝐿 , )|  |𝑄2(𝑝  𝑝𝐿 ,2)| (4.12) 

 
𝐸𝑙𝑜   𝐸𝑙𝑜  ,  𝐸𝑙𝑜  ,2  ∫ (𝑃𝑙𝑜  ,  𝑃𝑙𝑜  ,2)𝑑𝑡

𝑡𝑓

𝑡𝑖

 (4.13) 

Simulation Results 

An estimation of what mode results in the lowest power losses is made 
by evaluating Equation (4.12) for each mode and steady state conditions 
of the speed and position of the multi-chamber actuator. This indicates 
what mode selection to expect from the agent’s learning. The solution for 
two load cases is shown in Figure 4.19. The safety boundary condition 
limiting the number of modes that can be applied to the system is also 
shown. This safety boundary is part of the additional rules mentioned 
earlier. 

 
Figure 4.19  Best modes according to Equation (4.12) and the safety 
boundary, 120 kg external load. a) For 𝑝𝐿 ,  60 𝑏𝑎𝑟; b) For  𝑝𝐿 ,  

100 𝑏𝑎𝑟; Resultant 𝑝𝐿 ,2: c) For 𝑝𝐿 ,  60 𝑏𝑎𝑟; d) For 𝑝𝐿 ,  100 𝑏𝑎𝑟.   
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What Figure 4.19a shows is that modes that can exert less force are 
better when the actuator is retracted, while modes that can exert higher 
forces are better when it is extended due to the geometry of the boom 
arm. This results in a closer match of 𝑝𝐿 ,  and 𝑝𝐿 ,2. However, the mode 

that results in the lowest power losses depends on the flow rate as well, 
Equation (4.12). That is the reason why, at higher speeds, weaker modes 
are chosen, because they result in a lower required flow rate. For a larger 
𝑝𝐿 ,  pressure, the weaker modes result in a better match of pressures. 

The theoretical assessment of the variables that compose the reward 
function, like pressures presented in Figure 4.19, provides insights into 
what the agent should learn. They provide guidance for tunning the re-
ward function and for the evaluation of the agent’s performance after 
training. However, as shown in Equation (4.11), reward functions usually 
have multiple terms which can be difficult to evaluate, especially when 
some of the terms are conflicting.  

Figure 4.20 presents simulation results, for the trained agent per-
forming the mode selection for the one load case presented in Figure 
4.19. For comparison, it is also shown the system performance on the 
same tests but with a conventional actuator instead of the multi-chamber 
actuator for Load 2. Conv and RL are the abbreviations for the conven-
tional actuator and the multi-chamber actuator, respectively. 

Figure 4.20a shows the task completion, while Figure 4.20b shows the 
selected modes. If comparing Figure 4.20b with Figure 4.19b, it is no-
ticed that the agent does learn to select modes that minimise energy 
losses, and that, in turn, results in a better match of pressures than the 
conventional case, as shown in Figure 4.20c. Consequently, the power 
losses are reduced significantly, as shown in Figure 4.20d. 

All load scenarios were simulated, and Equation (4.13) is used to com-
pare the energy losses. Results for some of the load cases, normalised by 
the highest total energy losses for all test cases of each level of 𝑝𝐿 , , are 

presented in Figure 4.21. More results are presented in Paper IV. 
The simulation results showed that the agent learned to select modes 

that result in lower energy losses. Exceptions occurred for some of the 
load cases where the agent chose to run the system as a conventional ac-
tuator (mode 2) but does not choose something worse than that, e.g., a 
mode that cannot drive the load. 

Overall, what these results show is the capability of this type of 
method to find an optimised solution for the control problem with mul-
tiple objectives. The agent was trained several times and similar solu-
tions were found, however, it is not known if it is the global optimal so-
lution or a local optimum. This topic is further discussed in Section 4.2.5. 
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Figure 4.20  Simulation result, 40kg external load and 𝑝𝐿 ,  100 𝑏𝑎𝑟. a) 

Actuator position; b) Agent action; c) System and load sensing pressures; 
d) Power loss. 
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Figure 4.21  Energy comparison between conventional system and the 
system with multi-chamber actuator with mode selection, 𝑝𝐿 ,  100 𝑏𝑎𝑟. 
Loads: a) 40 kg; b) 80 kg; c) 120 kg; d) 160 kg; e) 200 kg; f) 240 kg. 

Experimental test performance 

The trained agent was deployed to perform the mode selection on the 
real system. It is evaluated on the same load scenarios used in the train-
ing. The experimental test results, for the same load case of Figure 4.20 
is shown in Figure 4.22. 

The agent was able to apply in practice the same modes it applied in 
the simulation (Figure 4.20b – Figure 4.22b) even though there are dif-
ferences in the input features. This can be noticed by comparing the ac-
tuator position (Figure 4.20a – Figure 4.22b) and system pressure (Fig-
ure 4.20c – Figure 4.22c). 

Collective results for the agent’s decisions in simulation are compared 
to the decisions in the experiments. They are shown in Figure 4.23. The 
abbreviations Sim and Test are used for the simulation and experimental 
test results respectively. 

In most of the cases, the agent was able to implement in the real sys-
tem the decisions also taken in simulation. Examples of load cases that 
failed are shown in figures 4.23b and c. Even though these cases show 
some deviation, they were not wrong during the whole test. This means 
that only a few decisions were different. However, they still follow the 
logic of choosing weaker modes at the start of the motion and stronger 
modes at the end of the motion. It cannot be said that the decisions in 
the experiments are wrong because the input features are different from 
the ones in the simulations. Different input features should lead to 
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different control decisions depending on the generalisation achieved 
during training. 

 
Figure 4.22  Experimental results for the system with multi-chamber ac-
tuator and mode selection, 40kg load and 𝑝𝐿 ,  100 𝑏𝑎𝑟. a) Position; b) 

Action; c) System pressure. 

 
Figure 4.23  Comparison of the agent’s decisions in simulation and exper-
iment, 𝑝𝐿 ,  100 𝑏𝑎𝑟. Loads: a) 40 kg; b) 80 kg; c) 120 kg; d) 160 kg; e) 

200 kg; f) 240 kg. 
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In this case study, only the selected mode was recorded. However, a 
more detailed assessment of the learning could be made by evaluating 
the output of the network which is predicting the value of taking each 
action. Changes in those values could be compared to changes in the in-
put features to detect which inputs affect more the output. This could be 
used to understand the high sensitivity observed in the test cases. 

The high sensitivity to the variation in input features seemed to result 
in low repeatability in the selection of modes in some of the load cases. 
The worst situation was observed for the load case of 120 kg and 𝑝𝐿 ,  60 

bar. An example is shown in Figure 4.24. 

 
Figure 4.24  Repeatability issues for 120 kg load and 𝑝𝐿 ,  60 𝑏𝑎𝑟. 

Results of Figure 4.24 represent the fact that data-driven controllers, 
as expected, might make different predictions due to operating in differ-
ent conditions that they were trained for. However, for the trained agent 
presented in this study, the decisions still made the agent complete the 
task in an acceptable way. 

4.2.5 Discussion 

The energy analysis based on the simulation results showed the reduc-
tion in energy losses caused by the selection of suitable modes by the 
agent. However, that does not mean that the training of the agent con-
verged to the global optimal solution. 

The model of the system was judged sufficiently accurate to describe 
the main characteristic and behaviour of the system. Still, there are de-
viations from the actual behaviour of the system. This supports the fact 
that RL-based methods can make use of simplified models to automati-
cally obtain controllers that perform well in practice. 

Although the use of simplified models was sufficient to pre-train the 
agent, its performance could likely be further improved by letting it, in a 
safe manner, interact with the real system and train from those experi-
ences. It is also expected a higher performance if a more accurate model 
is used. In this sense, there seems to exist a trade-off to be found between 
using simpler models for pre-training with more training in the real sys-
tem or using more accurate models for the pre-training and less training 
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in the real system. The first approach with simpler models should lead to 
faster training of the agent, less cost with model verification, and more 
costs with the training in the real system. The second approach with 
more representative models should result in slower training, higher costs 
with model verification, and fewer costs with the training in the real sys-
tem.  

One limitation of this study was to evaluate the agent under similar 
conditions for which it was trained. In the simulation, random noise was 
introduced to all measurements from the system to increase its robust-
ness in the experiments. However, there are still questions to be an-
swered, and an evaluation to be made, regarding the robustness and gen-
eralisation capability of the agent. 
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5 

Reliability of  
Machine Learning-Based EMSs 

Despite the focus of the thesis being on the energy efficiency aspect, 
safety aspects cannot be neglected. For machine learning-based EMSs 
there are characteristics of the methods that inherently make them prone 
to result in an unsafe operation. 

This section aims at assessing the reliability aspects of the EMSs de-
veloped in Chapter 4. The presence of dataset shift and absence of 
ground truth hinders the performance and reliability of the EMSs. There-
fore, one would like to know if, when, and where the learned strategies 
can be trusted. In this chapter, they are assessed by comparing the train-
ing and application datasets. 

5.1 Safety vs. System Architecture 

As discussed previously, the systems for whom the EMSs based on ma-
chine learning were developed are sub-systems belonging to a machine. 
Therefore, the impact of the developed EMS on the machine safety is a 
consequence of what system it is controlling. In certain cases, the sub-
system being controlled lies in parallel with the remaining sub-systems 
of the machine, as represented in Figure 5.1. It is a generalised represen-
tation of systems like the one studied in Section 4.1. 

 
Figure 5.1  Generalised structure of the plant and location of the EMS in 
the control chain, parallel case. 

In the figure: O represents the operator; C another lower level con-
troller for other subsystems; the EMS is the one based on ML; 𝑢  and 𝑢2 
are control signals; 𝑓, 𝑓 , 𝑓2 are functions representing subsystems; 𝑦  
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and 𝑦2 are the states directly affected by each subsystem; and 𝑦 is the 
machine states, which might contain 𝑦  and 𝑦2. 

The relation between the output (𝑦) and the control actions (𝑢 , 𝑢2) 
for this type of system can be expressed as 

 
𝑦  𝑓(𝑦 , 𝑦2)  𝑓(𝑓 (𝑢 , 𝑦), 𝑓2(𝑢2, 𝑦)). (5.1) 

The parallel nature of the system results in that the output of the sys-
tem is not only a function of the subsystem controlled by the EMS. If the 
subsystem 𝑓2 has a strong impact on the output (𝑦) than the safety re-
quirements around this EMS would be strong as well. If there is a weak 
impact on the output, than the safety requirements are also weak. This is 
an argument based on the physical coupling between the subsystems re-
garding safety of implementing and EMS based on ML. For example, if 
the power delivered from 𝑓2 is equivalent to the one delivered from 𝑓  it 
might be and indication of strong coupling and strong requirements on 
safety. 

At the same time, the coupling between 𝑓2 and the output can be made 
weak by control means. For example, make the 𝑓2 transparent to the op-
erator, in the sense that the output (𝑦) can only be affected as much as 
the operator requires it to be affect. This means that the EMS cannot 
drive the output on its own. This control approach does not affect the 
strength of physical coupling and can be interpreted as a safety con-
straint. 

However, the subsystem being controlled by the EMS might be in se-
ries with other subsystems, as represented in Figure 5.2. It is a general 
representation of the system studied in Section 4.2. 

 
Figure 5.2  Generalised structure of the plant and location of the EMS in 
the control chain, series case. 

The relation between the output (𝑦) and the control actions (𝑢 , 𝑢2) 
for this type of system can be expressed as 

 
𝑦  𝑓(𝑦2)  𝑓(𝑓2(𝑢2, 𝑦 ))  𝑓 (𝑓2(𝑢2, 𝑓 (𝑢 , 𝑦 ))). (5.2) 

The output is a direct function of the subsystem controlled by the 
EMS, which means that the strength of this coupling is strong. Every 
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undesired control action might negatively affect the output of the system, 
and the presence of this subsystem is difficult to make transparent to the 
operator. Therefore, this type of system results in stronger safety require-
ments to the development of EMSs based on machine learning. 

Although important for both types of systems, the safety requirements 
will depend on the type of system being controlled. 

5.2 Ground Truth and Dataset Shift 

This section applies the method to generated EMSs presented in Section 
4.1 as an example, but the concept applies to the method presented in 
Section 4.2 as well.  

In [75], an important question is posed: “how can we affect (ensure) 
performance on the application set when we only get to observe the train-
ing set?” This question is also asked here but in the context of developing 
EMSs based on machine learning. This question leads to the fundamen-
tal assumptions under which these methods to generate EMSs are ex-
pected to work. They are as follows: 

• By sampling drive cycles from real machines one can represent the 
population of possible working scenarios; 

• By applying control optimisation to a sufficiently accurate system 
model, one can gather information on how to control the real sys-

tem in an optimised way; 

• There is a function between system states and optimal control de-
cisions that can be learned and implemented in practice with ma-

chine learning; 

• The machine performance will not be significantly affected when 

controlled by the learned EMS. 

It is clear to see that these assumptions can be significantly affected by 
the uncertainties and differences between training and application that 
belong to the process of generating the EMSs. 

Regarding the first assumption, in theory one could use a very large 
sample of the population as input to the method. However, construction 
machines are versatile and perform many tasks that might be impractical 
to collect an extremely large sample to cover the population. Therefore, 
it is known from beginning that the EMS might operate in conditions 
that it was not exactly trained for. 

Regarding the second assumption, the problem is that there are model 
deviations; the discretisation of control actions and state space is not in-
finite in the optimisations; there can be inconsistencies in the drive cycle 
definition used as inputs for the model; and so on. Therefore, the 
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solution obtained from the optimisation might not represent the optimal 
solution for the real system. 

Despite having powerful function representation capability, machine 
learning models will hardly acquire a perfect learning of the task. At the 
same time, it is desired that they generalise for unseen cases, which 
means, one wants them to have a high performance in this inference 
from sample to population. Therefore, despite having an accurate model 
and optimisation, still the EMS might not apply the best decisions in 
practice. This is a point against the third assumption. 

The EMS obviously affects the performance of the machine, which 
might make it operate in a different performance than initially trained 
for. In this case, it will operate outside its training conditions. This is a 
point against the fourth assumption. 

The problems with sampling the population, model deviations, differ-
ences in optimisation results from model to reality, improper learning of 
the control strategy, and change in performance might negatively affect 
the performance of machine learning-based EMSs. These problems can 
be summarised as the methods suffering from absence of ground truth 
and presence of dataset shift. In this chapter, the absence of ground truth 
and dataset shift are evaluated by comparing the datasets generated 
along the EMS development process, shown in Figure 5.3. 

Three datasets are generated: training, testing, and application. The 
testing dataset is used to evaluate the training of the network while the 
application dataset is from the recorded operation of the EMS when de-
ployed to the system as the controller. 

As a consequence of issues mentioned earlier, training and testing da-
tasets are a representation of the application domain. However, it is ex-
pected that if the differences are small enough the assumptions made 
might be true and the EMSs should work reasonably well. In other terms, 
if there is a small dataset shift, and if the estimation of the ground truth 
is reasonable, the methods should yield reasonable results. 

5.3 Methodology 

The goal is to make an assessment of how well and safe the EMS is oper-
ating in a different domain. The reliability and performance of the result-
ant EMS are quantitatively assessed in the following ways between the 
training and application datasets: 

• Calculating the range mismatch of input features;  

• Calculating the difference in probability of occurrence (density) 

of input features; 
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• Calculating the performance of the network on the training da-
taset as the average absolute error along the covered space of in-

put features, and using it to estimate the performance of the net-

work on the application dataset as the error along the covered 

space of input features. 

 
Figure 5.3  Method to generate EMSs based on dynamic programming 
and neural networks and the generated datasets during the process. It is 
also shown what stages use models of the machine and what stage the real 
machine is used; [Machine image Volvo CE]. 

The following equations are used to calculate the data mentioned 
above. If two large and representative samples, A and B, are extracted 
from the same population, and a neural network would be trained on the 
A sample, it is reasonable to assume the performance (𝑒 – error) of the 
network in the two samples to be approximately the same. This is even 
more certain if the network has a smooth interpolation between the 
training points. In this sense, the average performance of the network (𝐸̅ 
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– average error) across close points of the samples would be similar. 
Therefore, 

 𝐸̅(𝐴)  𝐸̅(𝐵). (5.3) 

The average error is calculated by dividing the input space of features 
into small bins. The sum of the network prediction error on points inside 
each bin is calculated and divided by the number of points in the bin. An 
approximation to the total error (𝐸) in each bin can be calculated with 

 𝐸(𝐴)  𝐸̅(𝐴)𝑛(𝐴), (5.4) 

 𝐸(𝐵)  𝐸̅(𝐵)𝑛(𝐵), (5.5) 

where, 𝑛 is the number of points in a certain bin. Combining equations 
(5.3) and (5.5) leads to  

 
𝐸(𝐵)  𝐸̅(𝐴)𝑛(𝐵) (5.6) 

which is an estimation of the network total prediction error on sample B 
given the average error on sample A. This equation, of course with all the 
assumptions around it, allows for the estimation of the network perfor-
mance for situations where the ground truth or target is not known for 
the application. 

The probability of occurrence is defined as the ratio of points in a cer-
tain bin divided by the total number of points 

 𝑝(𝐴)  
𝑛(𝐴)

𝑁𝐴
, 𝑝(𝐵)  

𝑛(𝐵)

𝑁𝐵
 (5.7) 

The difference between distributions is calculated between the two 
probabilities of occurrence 

 
𝛥𝑝  𝑝(𝐴)  𝑝(𝐵) (5.8) 

where regions with a negative value of 𝛥𝑝 represents a lack of data in the 
A sample and positive values represent an excess of data. If A represents 
the training data set and 𝐵 the application dataset, this means respec-
tively, that the network had no sufficient information for the regions 
where it operates the most (B), and that it is likely biased towards regions 
that do not frequently occur. 

It is important to make the right comparisons, since there is a signif-
icant distinction between comparing the network itself or comparing the 
EMS. If the generalisation of the EMS is to be accessed, then the rules 
and limits of operation that define the EMS must be accounted for. This 
means that the input features space of the network must be evaluated, 
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but only for the situations where the network predictions reach the sys-
tem. 

Here, dataset shift is viewed in a more macro way, and the different 
types and sources of dataset shift are not classified. The reader is referred 
to the approaches of [105], [106], and [111] to interpret and identify da-
taset shift in a more detailed way. 

5.4 Reliability and Performance 

In practice, for the present method, the effects of the sources of dataset 
shift and absence of ground truth are combined. Here, no effort is placed 
in trying to isolate them. However, the effect of this combined problem 
is explored in depth by distinguishing the datasets and representing 
them graphically, see Figure 5.4.  

 
Figure 5.4  Representation of the relationship between population, sam-
ple, and datasets generated for the method based on dynamic program-
ming and neural networks. 

The multi-dimension state space vector of input features (𝒙 ) and 
global optimal decisions (𝑢 

∗ ) for the real machine (ground truth) defines 
the population (𝑃∗). It is what one would ideally like to cover with the 
EMS development method. The superscript * represents the global opti-
mal solution (ground truth). The dataset is mathematically represented 
as 

 𝑃∗  [𝒙 , 𝑢 
∗ ]. (5.9) 

This population is defined by all possible applications and tasks that 
the machine (architecture + controller + driver + environment) can en-
gage into, for example, short loading cycle, load and carry cycle, log 
stacking, and so on. Note that these types of application may or may not 
intersect or share similar states. 

Extracting only, yet all short loading cycles from 𝑃∗ means that only a 
sample of the population is being considered in the dataset. As described 

𝑃∗

𝑠 , 𝐿𝐶
∗

𝑠𝑀, 𝑟𝑎𝑖 𝑠𝑀, 𝑒 𝑡

𝑠 ,𝑁𝑁
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by [111], this type of action during the design phase introduces a bias to 
the training dataset. This sample of all short loading cycles is named 
𝑠 , 𝐿𝐶
∗  and contains all possible states (𝒙 , 𝐿𝐶) with their respective opti-

mal control decisions (𝑢 , 𝐿𝐶
∗ ). It is described as 

 𝑠 , 𝐿𝐶
∗  [𝒙 , 𝐿𝐶 , 𝑢 , 𝐿𝐶

∗ ]. (5.10) 

To simplify the notation, in the continuation of this chapter the sub-
script SLC is removed from the notation of the datasets belonging to this 
group. 

Up until this point perfect knowledge of the system and optimal deci-
sions have been assumed. In practice, the sample of short loading cycles 
used in the development of the EMS is not composed by all possible sce-
narios in short loading applications. The sample aims at extracting a rep-
resentative sample of short loading cycles but might fail to do so. Addi-
tionally, in practice there is no available ground truth for the real ma-
chine, and the optimal solution is only an estimation. Instead, for the 
present method, an estimation of the optimal control decision is ob-
tained with the use of models and optimisation.  

All these effects combined define a new dataset (𝑠𝑀) composed by the 
states of the machine obtained from the model and recorded inputs (𝒙𝑀), 
and the estimation of the optimised control decisions (𝑢𝑀

𝑜 ). This is rep-
resented as 

 𝑠𝑀  𝑠𝑀, 𝑟𝑎𝑖  ∪  𝑠𝑀, 𝑒 𝑡 

𝑠𝑀  [𝒙𝑀 , 𝑢𝑀
𝑜 ]𝑡𝑟𝑎𝑖 ∪ [𝒙𝑀 , 𝑢𝑀

𝑜 ]𝑡𝑒 𝑡, 
(5.11) 

where the sample is split in a dataset for the training of the network 
𝑠𝑀, 𝑟𝑎𝑖  and the testing of the network 𝑠𝑀, 𝑒 𝑡. Here, the superscript o re-

fers to the optimisation results, not the ground truth. The subscript M 
shows that the sample is generated from a model. It has a similarity to 
the original population 𝑃∗ and sample 𝑠 , 𝐿𝐶

∗ , but it is somewhat distorted 

by the dataset shift and absence of ground truth. 
After deploying the trained network to the real machine for testing, 

another dataset is generated that is composed by states of the application 
(𝒙 ,𝑁𝑁) and by predicted control decisions from the network (𝑢 ,𝑁𝑁) 

 𝑆 ,𝑁𝑁  [𝒙 ,𝑁𝑁, 𝑢 ,𝑁𝑁]. (5.12) 

The subscript NN is introduced to indicate that it is a neural network de-
cision or states affected by it. The subscript R means that the sample is 
generated from the real machine, not the model. 

The only datasets that one has access to during the development of 
the EMS with the method are the 𝑠𝑀, 𝑟𝑎𝑖 , 𝑠𝑀, 𝑒 𝑡, and 𝑠 ,𝑁𝑁. Therefore, 
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one can only give considerations and perform calculations regarding re-
liability and performance for the network on those datasets. It is not pos-
sible to fully characterise the dataset shift to 𝑃∗ or 𝑠 , 𝐿𝐶

∗ . The character-

istics of the three datasets around the method are described in Table 5.1. 

Table 5.1  Description of the datasets. 

 Datasets 
 Training Testing Application 

Symbol 𝑠𝑀, 𝑟𝑎𝑖  𝑠𝑀, 𝑒 𝑡 𝑠 ,𝑁𝑁  

Domain Model Model Real Machine 
Target From Optim. From Optim. No Target 
Ground Truth - - - 
Features Meas. + Model Meas. + Model Meas. only 
Trained for it? Yes No No 

This study is limited to compare 𝑠𝑀, 𝑟𝑎𝑖  and 𝑠 ,𝑁𝑁 since the analysis 

of 𝑠𝑀, 𝑒 𝑡 would give more insights into the training performance of the 

network instead of its reliability and performance on the application.  
Based on figures 5.3 and 5.4 this chapter concerns the comparison of 

the network performance as the output of stage 𝑐 as the EMS (dataset 
𝑠𝑀, 𝑟𝑎𝑖 ), with the results obtained from its operation in the application 

at the end of stage d (dataset 𝑠 ,𝑁𝑁). It also presents an estimation of the 

performance of the network in the application using 
 

𝐸̅(𝑠 ,𝑁𝑁)  𝐸̅(𝑠𝑀, 𝑟𝑎𝑖 )𝑛(𝑠 ,𝑁𝑁). (5.13) 

The two datasets in focus can be graphically represented on their own 
and for two generic feature variables (𝑥 , 𝑥2), as shown in Figure 5.5. The 
region defined by the sample 𝑠 ,𝑁𝑁 is called application domain (AD), 

whereas, the region defined by the sample 𝑠𝑀, 𝑟𝑎𝑖  is called training do-

main (TD). 

 
Figure 5.5  Interpretation of the coverage differences between the training 
domain/dataset and application domain/dataset. 
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Figure 5.5 shows what to expect when assessing reliability and perfor-
mance by comparing the two datasets as described. There can be a mis-
match in the coverage, both in range and probability of occurrence. The 
difference in range can lead to an area trained for that does not occur in 
the application; or, to an area not trained for that does occur in the ap-
plication. The probability of occurrence concerning the two datasets will 
show if a certain combination of variables is more likely to occur in one 
over the other (this can be evaluated for the intersecting area). 

It must be noticed that the training dataset is composed by many more 
cycles than the application dataset. The application tests with the imple-
mented EMS were carried to characterise the operation of the controller 
and not to evaluate its reliability. Since extensive tests were not per-
formed, one can only obtain an estimation of the reliability of the EMS 
in the application. Furthermore, only one operator drove the machine in 
the application. Thus, the collected results from the application are also 
just a sample from that domain. Nevertheless, it does allow the estima-
tion of how the EMS performed in the application, which is supported by 
the machine performance results. 

5.5 Results 

The reliability assessment is based on the estimation of dataset shift, 
while the performance assessment is based on the estimation of the pre-
diction performance based on the training accuracy. 

Reliability Assessment 

Figure 5.6 shows, for the training and application datasets, the plots for 
the probability of occurrence and coverage for the multi-dimensional 
space defined by the pair of input features engine speed and transmis-
sion output speed, which is proportional to the machine speed. 

It must be remembered that figures 5.6a and 5.6b represent the input 
feature space for the situations where the output from the network was 
allowed to reach the system. The whole input feature space would likely 
have a wider range than the one shown in the figures, but assessing it 
would be irrelevant. 

Figure 5.7 shows, for the training and application datasets, the plots 
for probability of occurrence and space coverage for the space defined by 
the pair of input features accelerator pedal and state of charge. 

Figures 5.6f and 5.7f show the difference between the probability of 
occurrence (Δ𝑝). They indicate where there is a lack or excess of training 
data in comparison to the application. This information could guide the 
selection of representative drive cycles to compose the training dataset. 
They represent the dataset shift in terms of difference in the distribution. 
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Figure 5.6  Training dataset vs. application dataset for: Transmission 
Output Speed and Engine Speed. a) Training dataset probability of occur-
rence; b) Application dataset probability of occurrence; c) Space coverage 
comparison; d) Intersection area; e) Excess and missing coverage areas; f) 
Difference between datasets in probability of occurrence. 

Figures 5.6c and 5.7c show the difference in coverage of the two da-
tasets where the excess area covered by the training dataset and possible 
missing areas not covered by the training dataset are seen. Figures 5.6d 
and 5.7d show the overlapping area between the two datasets, which is 
used to calculate the excess and missing areas. The excess area and the 
missing area are quantified and displayed in figures 5.6e and 5.7e. They 
represent the dataset shift in terms of the range of coverage. 
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Figure 5.7  Training dataset vs. application data set for: State of Charge 
and Accelerator Pedal Position. a) Training dataset probability of occur-
rence; b) Application dataset probability of occurrence; c) Space coverage 
comparison; d) Intersection area; e) Excess and missing coverage areas; f) 
Difference between datasets in probability of occurrence. 

Performance Assessment 

To evaluate the performance of the EMS on its training domain the av-
erage absolute error (𝐸̅) is calculated for each pair of input features, by 
splitting the space in small bins; thus the input feature space is discre-
tised. It must be remembered that the average absolute error can only be 
calculated for the training dataset, and it must be estimated for the ap-
plication dataset according to Equation (5.13). 

By plotting this average absolute error for the training dataset on top 
of the probability of occurrence for the training dataset allows one to see 
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where, in the input feature space, the network has worst accuracy. Most 
likely, the regions of high probability of occurrence should see a small 
average error because the network had more instances to train for in 
comparison to regions with low probability of occurrence. 

Plotting this average absolute error for the training data set on top of 
the probability of occurrence for the application dataset allows one to see 
where, in the input feature space, the network operated. By inference 
from training to application, one can see if the network operated in the 
application in a region of supposedly higher accuracy or in a region of 
lower accuracy, at least with respect to training. 

Figures 5.8 and 5.9 present this kind of plot for the same two pairs of 
network input features used in figures 5.6 and 5.7. In the plots, the rings 
represent the average absolute error, where a larger ring means a larger 
error. Results are normalised with respect to the maximum average ab-
solute error. 

As expected for the training dataset, the higher average absolute error 
coincides with the regions of lower probability of occurrence, figures 5.8a 
and 5.9a. The opposite is also true; the lower average error coincides with 
the regions of higher probability of occurrence. This can be due to imbal-
anced data bias and/or because certain parts of the underlying function 
between inputs to target might be harder to map. 

Now, assessing figures 5.8b and 5.9b, in the application the networks 
operated mostly in the parts of lower training error. In this sense, one 
could infer that it was operating in the regions of higher training accu-
racy and most likely made reasonable decisions, at least according to 
what it was trained for. However, it is difficult to evaluate the accuracy 
of the network in the application due to the lack of ground truth. 

In figures 5.8c,d and 5.9c,d, the total error calculated with Equations 
(5.4) and (5.6), respectively is shown. They show, with the larger rings, 
where the EMS ‘collected’ more error. They indicate that more focus 
should be given to those areas in training to achieve a lower prediction 
error there because the multiplication of the number of points and aver-
age error is large. 

Here this quantitative analysis of probability of occurrence vs. abso-
lute average error is only shown for four of the input features, but in all 
other features and combinations of features, similar outcomes are ob-
served. 
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Figure 5.8  Performance of the network in each domain for: Transmission 
Output Speed and Engine Speed. a) Training domain probability of occur-
rence and average error; b) Application domain probability of occurrence 
and average error; c) Training domain probability of occurrence and total 
error; d) Application domain probability of occurrence and total error. 

It is worth remembering two important points around the estimation 
of the absolute average error (𝐸̅). The first is that the level of confidence 
in them is not the same across the distribution. The calculated average 
error is more representative in the regions where there are more points. 
At the same time, it is averaging across all the remaining dimensions of 
the input feature space. This means the performance of the network can 
vary considerably even inside a bin. 
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Figure 5.9  Performance of the network in each domain for: Accelerator 
Pedal Position and State of Charge. a) Training domain probability of oc-
currence and average error; b) Application domain probability of occur-
rence and average error; c) Training domain probability of occurrence and 
total error; d) Application domain probability of occurrence and total er-
ror. 

5.6 Discussion 

This chapter presented a few aspects on the assessment of the reliability 
of machine learning-based methods. However, there are additional top-
ics that are worth to be discussed. 

An argument for not calculating the accuracy of the network in the 
application through the model is that one would become similar to the 
accuracy of the network in the test dataset. This means that a dataset the 
network was not trained for and contains a dataset shift from the 
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application. Therefore, if calculated that way, the estimated accuracy is 
not representative of the application. 

The results demonstrate that the variability in the machine operation 
performance due to different operators can be significant, as indicated in 
[42]. Although a professional operator drove the machine during the 
tests, it is expected that high variability of productivity was present in the 
tests. However, this variability might not have been sufficient to fully 
characterise the application domain of the EMS, which means more op-
erators would be necessary to conduct a thorough assessment of the re-
liability and performance of the EMS. However, the method presented 
here still is a valid initial point. 

In figures 5.6e and 5.7e, it is indicated that there is a significant excess 
in terms of the coverage of the input features space. In [78], it is stressed 
that one of the negative side effects of a training space with broader cov-
erage than the application space is that it is inefficient to fit the network 
outside the range of its use. This is especially true when the input dimen-
sion is large. On the other hand, the missing area is seen in the same 
figures. According to [78] and [104], there are techniques that indicate 
when a network is being used outside the range of the data for which it 
was trained. This will not improve the network performance, but it will 
prevent its use in situations where it is unreliable. In the case of being 
outside, one could trigger a rule-based controller to take over. 

According to [78], a network trained to generalise will perform as well 
in new situations as it does on the data for which it was trained. For the 
scope of this study, this means that the generalisation of the network 
could be one way of reducing the effects of dataset shift. According to the 
author, there are at least five approaches used to obtain simple networks: 
growing, pruning, global searches, regularisation, and early training 
stopping. 

In [78], it is also mentioned that it is not possible to guarantee net-
work performance when the inputs to the network are outside the range 
of the training set, because they do not extrapolate well. For the present 
method, it may not be possible to define the active region of the input 
space because the operation region of these machines is vast. However, 
one can often collect the operation data of the machine and evaluate the 
coverage of the input space. 

How can one reduce the EMS uncertainty caused by the dataset shift 
and the absence of ground truth in the application? One way is to im-
prove the system model to gain a better representation of the machine 
behaviour, increase the discretisation of the state space and decrease the 
time step as well. This would make the solution of the optimal control 
problem a better estimation of the ground truth for the application. How-
ever, there is an increased computational cost in this case. 
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Another possibility is to increase the performance of the machine 
learning model itself to achieve better training accuracy and generalisa-
tion. This could be done by several means and the reader is referred to 
common literature in machine learning, like [75], [78], and [79]. 

Another possibility is to continue with the training of the network 
while in the application. However, the problem is how to find the optimal 
decisions. For that, a reinforcement learning algorithm could be applied 
in a similar way as suggested in [103]. 

Yet another possibility is to follow the recommendations of [105], 
[106], and [111] to account for and counteract dataset shift during the 
development and training of the machine learning model. The reduction 
of the effects of dataset shift should take the system closer to the ground 
truth by having a better alignment with the actual application. 

Indirectly, a few procedures that were applied during the develop-
ment of the EMS seem to have resulted in a reduced dataset shift. One of 
them was to find a better neural network structure that is capable of 
achieving higher prediction accuracy in the training and testing datasets. 
Nevertheless, the number of cycles used as inputs seemed to have 
achieved a reasonable coverage of the selected task. Moreover, some fun-
damental/mandatory rules from the rule-based architecture were in-
cluded in the optimisation process as constraints, this also has an effect 
of reducing dataset shift.  

In this section, the effects of the presence of dataset shift and absence 
of ground truth were collectively assessed by comparing the distributions 
of features of the datasets for training and application. The results show 
that there are clear differences in the datasets, indicating the presence of 
dataset shift. However, the performance results of the machine tests 
shown in Section 4.1 showed that these differences were not significant 
to the point of causing a bad performance of the EMS. Even though the 
optimised decisions are only an estimation of the ground truth it was still 
sufficient to achieve good performance in the machine. Therefore, the 
initial assumptions made at the start of this section were valid. 
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6 

Review of Appended Papers 

Paper I 

Energy Management Based on Neural Networks for a Hy-
draulic Hybrid Wheel Loader 

The paper presents the supervised learning method to obtain optimised 
energy management strategies based on dynamic programming and neu-
ral networks. Dynamic programming is used to obtain optimal offline en-
ergy management strategies for a series of drive cycles. The results are 
used as examples to train a neural network that implements the energy 
management strategy. Through simulation, the neural network’s ability 
to learn the dynamic programming decision-making process is shown, 
resulting in the machine operating with fuel consumption close to that of 
the offline optimal energy management strategy. Aspects of modelling 
these machines for dynamic programming optimisation, the data neces-
sary to train the network, the training process, variables used to learn the 
dynamic programming decision-making process, and the robustness of 
the network when facing unseen operational conditions were discussed. 
A limitation of the study was the use of only one base cycle that was ran-
domised to generate similar drive cycles. Therefore, a question that re-
mained was if the method would also be able to produce a similar per-
formance for several recorded drive cycles, which represents a more 
complicated learning task closer to reality. 

Paper II 

Rule- and Neural Network-Based Energy Management for a 
Hydraulic Hybrid Wheel Loader 

The paper highlighted the importance of considering required determin-
istic control rules from the machine control structure already in offline 
optimal control optimisations used to generate the data/knowledge to be 
learned by the neural network. The control rules are constraints to the 
optimal control problem. If not considered, the control optimisation re-
sults do not represent the reality and the EMS will have poor 
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performance. In other words, to consider these types of rules increases 
the robustness of the network to the real application by reducing the dif-
ferences between the control structure used in the development process 
and the control structure of the real machine. It reduces the dataset shift 
between the training/development domain and the application domain. 
Results showed that a better performance of the EMS is achieved if the 
rules from the application are considered in the optimal control problem. 
It was also shown that the implemented EMS is a combination of deter-
ministic control rules and a neural network. The rules ensure a safe op-
eration of the machine by reducing possible mispredictions of the net-
work to be applied to the system during critical control actions requested 
by the operator. 

Paper III 

Performance Evaluation of Neural Network-Based Energy 
Management for a Hybrid Wheel Loader 

This paper presented the development and evaluation of the supervised 
learning method to generate EMSs based on dynamic programming and 
neural networks. The developed EMS was implemented in the real ma-
chine for experimental evaluation in real working conditions. By com-
paring it to a rule-based strategy it was shown that the proposed ap-
proach can lead to, at minimum, equivalent fuel efficiency, which is a 
consequence of the networks’ capability to implement optimised control 
decisions learned from dynamic programming results. It was then con-
firmed that simplified models are sufficient to generate a controller that 
works well in practice from beginning. However, issues related to adapt-
ability and operator feeling were found to be the major goals for future 
development. This paper also drove the study regarding the robustness 
and reliability of machine learning-based methods presented in Chapter 
5. Where it is shown that the dataset shift between training and applica-
tion was not large, therefore not hindering the performance of the net-
work to a significant extent. The lack of ability to continue the training 
after deployment to correct model and drive cycle deviations was the 
main driver to explore the use of reinforcement learning in a different 
test case. 
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Paper IV 

Multi-Chamber Actuator Mode Selection Through Reinforce-
ment Learning – Simulation and Experiments 

The paper presented the development and implementation of a rein-
forcement learning agent as the mode selection controller for a multi-
chamber actuator. The goal was to evaluate the capability of such a 
method to find and implement optimised control decisions for complex 
systems of construction machines. The reinforcement learning agent was 
trained to select the mode of the actuator to minimise system energy 
losses. The agent was trained in a simulated environment and afterwards 
deployed to the real system. As for the supervised learning case, the final 
controller is also a combination of network and rules to ensure safe op-
eration. In the same way, these rules are included in the training process 
to minimise the dataset shift from training domain to application do-
main. In this study, the simulation results indicate the capability of the 
agent to minimise energy losses while maintaining the actuation perfor-
mance. Experimental results show the capacity of the agent to perform 
the optimised mode selection in the real system. This study also shows 
that simplified, but representative models, are sufficient to learn the 
EMS and give the networks enough robustness to allow their direct ap-
plication to control the systems. A limitation of the study was to not con-
tinue the investigation of the training after deployment to the real sys-
tem. 

Paper V 

Design Optimisation Strategies for a Hydraulic  
Hybrid Wheel Loader 

This paper contains the model used in papers I, II, and III. It presents a 
study on combined control and design optimisation. This is an important 
part of the conceptual design phase of construction machines, where 
concepts must be compared to one another while performing the same 
task. In this sense, it requires the design and the control to be optimised 
to allow an unbiased judgement between different concepts. Complexity 
of a system is often used as a factor when judging machine concepts. A 
machine concept that is complex in structure usually leads to an in-
creased burden in the development of controllers. That was the starting 
point of thinking about solving this problem with machine learning 
methods. Therefore, to some extent, this thesis addresses this problem 
by evaluating methods that are capable of finding an optimised control 
strategy and able to implement them in practice. 
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Paper VI 

Extended Analysis of a Valve-Controlled System with Multi-
Chamber actuator 

This paper presents a theoretical study on the potential of having a multi-
chamber actuator in a load sensing architecture to reduce valve-con-
trolled losses. It provided the basis for the selection of modes to be used 
in Paper IV. It also shows how complex the control problem for these 
architectures can be, which served as motivation to apply reinforcement 
learning to solve it. At the same time, it shows how a complex system can 
be simplified to make the development of controllers an easier task. 

Paper VII 

Boom Energy Recuperation System and Control Strategy for 
Hydraulic Hybrid Excavators 

This paper presented the development and assessment of a rule-based 
EMS for the control of the boom potential energy recuperation of an ex-
cavator. In connection to this thesis, and together with the rule-based 
controller used as comparison in the first case study, it provided insights 
into how well rule-based controllers perform and how easy/difficult their 
implementation is. It also allowed for the understanding of a complex 
hydraulic system for construction machines, which is one of the motiva-
tions to evaluate the methods studied in this thesis. Another important 
lesson learned from this paper regards the performance assessment of 
construction machines. This is because the variability in the work cycles 
is large, which emphasises the importance of robustness in the developed 
control strategies. 
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Discussions and Future Studies 

The studies performed along the development of this thesis showed a 
number of major points of concern and importance around the develop-
ment and application of energy management strategies based on ma-
chine learning for construction machines.  

Representativeness of the Models 

At some point in the EMS development, the supervised machine learning 
and reinforcement learning approaches rely on models of the machines 
to obtain the information of how to control the systems, either from op-
timisations or by interaction. It was shown that sufficiently representa-
tive models were enough to obtain this information at a reasonable com-
putational cost, i.e., they were also sufficient to present and evaluate the 
methods. 

More accurate models should result in strategies more suitable for the 
real application due to their smaller deviation from the actual behaviour 
of the machines. However, models are always an estimation of real be-
haviour and there will always be deviations and compromises. 

It is believed that important contributions to this topic could come 
from using even more representative and validated models than the ones 
used here. For example, the impact of different model accuracies on the 
resultant strategy and on the amount of continued training after deploy-
ment could be explored. 

On the other hand, a balance between time to run the models and rep-
resentativeness should be found. The reason is that several simulations 
must be performed to generate the data for the learning. The approach 
of this thesis was to work with simplified and less computationally heavy 
models. However, they were still representative enough as shown in the 
results of Chapter 4. 

Optimisation 

The methods used here are based on models; therefore the control solu-
tions found do not represent the global optimal solution for the real ma-
chines. This leads to the presence of domain shift when applied to the 
real systems. It also results in absence of ground truth for the machine 
learning models. Therefore, it is more correct to say that the methods 
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evaluated here resulted in optimised strategies rather than optimal ones. 
Future studies should focus on evaluating how close the optimised solu-
tion from these methods is from the global optimal solution. 

The studies presented here focused mainly on the energy efficiency 
aspect of the control. However, in the control of construction machines 
it is highly desirable to have a smooth operation to reduce the workload 
of the operator while increasing its comfort. This could be extended to 
say that the optimisation goal is in practice never a single one but is a 
multi-objective problem. It is believed that, as long as they can be intro-
duced in the optimisation generating the targets for learning, the net-
works should be able to learn the trade-off between the objectives. This 
is shown in the reinforcement learning case study, where the objective 
function had three terms. 

Learning and Implementation of the Optimal Solution 

The methods evaluated here were proven capable of finding optimised 
solutions and implementing them in practice. However, it is not known 
how close the controller implemented in practice is to the optimal solu-
tion. One problem is model deviations, and another could be the gener-
alisation that happens during the training of the networks. Generalisa-
tion makes the learned strategy only a close prediction of the optimal 
one. On the other hand, the capability of machine learning to generalise 
to unseen cases is one of its advantages, and the actual end goal for their 
application. 

It is believed that a trade-off between the representation of the opti-
mal solution and generalisation can be adjusted in the machine learning 
model and training parameters. 

There is also a deviation from the optimal caused by the necessity to 
use deterministic rules in the control architecture. This could be due to 
safety constraints for example. One could view them as constraints to the 
optimisation process, thus limiting the performance of the solution. At 
the same time, the final control structure implemented in the machine is 
possibly different from that used in the development. This is a source of 
dataset shift and a deviation from optimality since the optimal found in 
the development is not the one in practice. 

Although important, to include all rules into the optimisation process 
in practice it is not an easy task, and sometimes even infeasible depend-
ing on the method. In this sense, it might be that the capability of making 
optimal decisions does not take place in practice all the time, although 
they should according to the optimisation. This can cause a significant 
dataset shift that affects the performance of the network. One could view 
the inclusion or exclusion of rules, as something similar to a reduced 
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model representation where the model is not a true representation of re-
ality. 

Domain Shift and Reliability 

The final control structures are in essence black-boxes, which does not 
allow, at least in a transparent way, their internal assessment to make 
sure they always operates in a reliable, safe, and stable manner. How-
ever, the studies of this thesis indicate that it is possible to compare the 
training and application domains to ensure that they operate inside the 
regions for which they were trained. On top of that, there must be rules, 
external to the networks, that always ensure a safe operation. Thus, the 
learned control strategy makes the system operate efficiently according 
to its training while rules ensure a safe operation. To some extent, this is 
also accompanying any type of controller. It does not necessarily result 
in additional development work for the machine learning-based control-
lers. 

The difference in domain could be tackled by increasing the number 
of scenarios used for the learning; improved model; integration of all re-
maining parts of the machine controller in the optimisations; and con-
tinued learning after deployment. 

This was briefly assessed in this thesis, but it remains a task for a con-
tinuation study to focus on the robustness of such methods in the real 
application. 

Continuation of Training 

Since their training is based on models of the machines and systems, it 
is natural to think of using this information only as a first training step 
to improve afterwards with actual results from machine operation.  

The supervised learning approach tested here relies on results from 
dynamic programming, and it cannot further train in practice under the 
same approach due to the impossibility of applying dynamic program-
ming in the machine. However, the same network could, in theory, be 
placed under a reinforcement learning approach to continue its training 
in practice. This would give it a degree of adaptability to improve over 
model imperfections or adapt to conditions it was not trained for.  

Naturally, the controller trained under the reinforcement learning ap-
proach can directly be updated under the same structure while interact-
ing/controlling the system.  

The continuation of training after deployment was not explored in this 
thesis, but surely it would need to be accompanied by rules that result in 
stable convergence and safe operation. Thus, the evaluation of continued 
training after this initial learning from models remains for future study. 
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Development of EMSs Based on Machine Learning 

In the end, it seems that there can be a shift in the type of activity the 
control engineer performs when using these methods, mostly so with re-
gards to developing the controller or evaluating it. 

Methods based on machine learning seem to shift the time to evalua-
tion rather than development because the training of the networks is per-
formed by the algorithms and that is where knowledge is extracted from 
data and built into the networks. This cannot, in principle, be affected by 
the engineer after the training by tweaking/tuning individual network 
parameters.  

Although assessed for relatively less-complex systems, for more-com-
plex systems a reduced control development time in comparison to rule-
based methods is expected. This is mostly because of the methods’ capa-
bility to find and learn the strategies automatically. 

The two EMSs derived in the thesis cannot be easily tuned or adjusted 
after training to fix an unintended control behaviour. For example, it 
would be required to remove/fix that problem in the dataset and retrain 
it, or to implement the continued training after deployed, as discussed 
before. The tunning and adjustment of such EMSs after training should 
be a topic for further research. 

One comparison is made between the different EMSs concerning the 
time required for development. Some might take a considerable amount 
of development time to be formulated, while others are more straightfor-
ward and demand less knowledge from the control engineer. 

This thesis used simple but sufficient machine learning models to 
learn and apply control strategies in practice. No large emphasis was 
placed on comparing different network architectures. Therefore, there is 
the potential for further performance increase by using other machine 
learning models, which remains a future study. 

Independence to System Concept 

The methods evaluated in this thesis are concept independent. This 
means they can be implemented to, in principle, any type of system to 
perform energy management. This makes them also relevant for the 
trend in electrification of mobile machines where new machine architec-
tures with a greater focus on efficiency are seen. Due to the lack of energy 
density of current batteries, for plug-in battery electric machines, it be-
came a necessity to improve the machine efficiency to reduce battery 
pack size and reduce operation downtime due to charging. 

Although the study cases were applied for hydraulic systems, it is be-
lieved that the same techniques could be applied to other domains such 
as mechanical and electrical ones. 
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Interaction with the Machine Operator 

Despite the trend in the development of autonomous and automated 
functions, also called operator assist functions, most construction ma-
chines are still driven by an operator. According to [11], throughout the 
working life of a wheel loader the operator is the main influencer on ef-
ficiency and productivity. The same view is supported by [44] when the 
author mentions that operator decisions about control of the engine and 
vehicle speed, load lifting, and steering have direct effects on fuel con-
sumption and drive cycle duration. In an empirical study, [42] shows 
that in a drive cycle, differences due to operator behaviour can be as 
much as 150% with respect to fuel efficiency and 300% regarding 
productivity among experienced operators. 

The optimal operation is commonly generated during machine con-
cept development to access its theoretical efficiency [11; 44; 114]. How-
ever, according to [62], the influence of the human operator is an aspect 
that is traditionally neglected in dynamic simulations. The author says 
that a “human element”, introduced into dynamic simulations of work-
ing machines, provide more relevant answers with respect to operator-
influenced complete-machine properties such as productivity and energy 
efficiency. 

In the first case study, the operator reported the ‘non-transparent’ op-
eration of the neural network controlling the sub-system. This is a poten-
tial source of performance degradation because of the increased work-
load due to the unexpected control action. This problem was not consid-
ered in the development of the controllers. However, operator and EMS 
interaction aspects should also be considered when developing opti-
mised EMSs based on machine learning, and if possible, such aspects 
should be considered already in the modelling/optimisation phases. 

Comparison to Rule-Based Strategies 

The main difference between the RB-EMS and an NN-EMS is in how the 
knowledge is obtained and constructed. In the case of a neural network, 
the knowledge is constructed in the weights, biases, and activation func-
tions. In the rule-based approach, the knowledge is in the heuristic rules. 
In the neural networks, the knowledge is obtained directly while training 
on the optimisation results, while in the rule-based approach it comes 
from the engineer. According to [76], the parameters learned by the neu-
ral network are difficult to be interpreted. Learned parameters of a neu-
ral network are not as easily communicated as deterministic rules. 

As known since the beginning of this thesis, rule-based methods are 
preferred because of their transparency, predictability, and simplicity. 
However, the simplicity aspect is affected the more complex the systems 
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become, which also contributes to the lower optimality of such methods. 
This could be one point where methods based on machine learning have 
an advantage over rule-based ones, for example, when the optimal con-
trol solutions are not known and/or too difficult to be implemented by 
hand. In such cases, the capacity of machine learning methods to find 
and implement strategies in the machines might have a significant ad-
vantage. However, the issues around safety and robustness must be stud-
ied in depth before their large-scale deployment to machines. 
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Conclusions 

This thesis evaluated the use of machine learning as the means of learn-
ing and implementing control strategies for energy management in con-
struction machines. Two methods were used: One based on a supervised 
learning and another one based on reinforcement learning. 

Both methods were evaluated from the development to the applica-
tion in experiments. Topics related to robustness, reliability, and perfor-
mance were addressed. The two study cases presented in this thesis pro-
vided information to answer each research question: 

RQ1. How can machine learning-based energy management strategies 
be obtained for construction machines? 

This question is addressed in papers I, III and IV. Neural networks, 
trained under a supervised learning approach or a reinforcement learn-
ing approach, give the ability to automatically learn optimised control 
strategies and implement them as the energy management strategy in 
the machines. However, since the initial learning is based on models, 
there might be the necessity for a continuation of the learning process 
after deployment to adapt to the real system. 

RQ2. What efficiency improvements can be expected from construction 
machines when operating with machine learning-based energy 
management strategies? 

This question is addressed in papers I, III, and IV. The results of this 
thesis showed that control strategies based on machine learning do not 
seem to have a limitation on the learning and implementation of opti-
mised control strategies. Therefore, these types of controllers have the 
potential to make the machine operate closer to their maximum effi-
ciency than rule-based controllers. 

RQ3. Can supervised learning and reinforcement learning-based meth-
ods, using neural networks as function representation, overcome 
the challenges related to system architecture and operation of con-
struction machines? 

This question is addressed in papers I, II, III and IV. The energy man-
agement strategies developed in this thesis were proven to be robust to 
the operation of construction machines when operating in conditions 
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similar to those they were trained for. It means they are robust to model 
and control structure differences and still able to operate in a slightly dif-
ferent operation environment. However, the need for reducing these dif-
ferences to increase their robustness is identified. It was also shown that 
they can learn the complex relationships between system variables and 
control decisions for such systems. 

RQ4. What advantages and drawbacks can be expected from machine 
learning-based methods for energy management in construction 
machines? 

Papers I, II, III, IV address this question. Adaptability and safety are 
the main points of concern for the applicability of this type of method to 
generate energy management for construction machines. The strategies 
must be accompanied by rules to ensure safety across all operation sce-
narios. On the other hand, they are able to automatically find control 
strategies for construction machines and implement them in the ma-
chines with a considerable level of robustness to the differences between 
the development domain and application domain. 
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