

M. Sc. Fedor Nazarov Chair of Fluid-Mechatronic Systems

Energy Efficiency Analysis & Experimental Test of a Closed-Circuit Pneumatic System

6th Workshop on Innovative Engineering for Fluid Power November 22-23 – São Paulo – Brazil – 2022

Structure

- Introduction
- Concept of the closed-circuit systems
- State of art
- Compressor performance in a closed-circuit
- Closed-circuit pneumatics
- Summary & Outlook

Motivation

- Pneumatics is inevitable in numerous branches
- Compressed air is a costly medium for energy transmission
- Competitiveness to electromechanical drives depends more and more on energy efficiency

Motivation

- Pneumatics is inevitable in numerous branches
- Compressed air is a costly medium for energy transmission
- Competitiveness to electromechanical drives depends more and more on energy efficiency
- Energy efficiency of pneumatic drives is difficult to assess:
 - one compressor, many consumers
 - various load cases for pneumatic cylinders

Motivation

- Pneumatics is inevitable in numerous branches
- Compressed air is a costly medium for energy transmission
- Competitiveness to electromechanical drives depends more and more on energy efficiency
- Energy efficiency of pneumatic drives is difficult to assess:
 - one compressor, many consumers
 - various load cases for pneumatic cylinders

Motivation

- Pneumatics is inevitable in numerous branches
- Compressed air is a costly medium for energy transmission
- Competitiveness to electromechanical drives depends more and more on energy efficiency
- Energy efficiency of pneumatic drives is difficult to assess:
 - one compressor, many consumers
 - various load cases for pneumatic cylinders

Introduction Motivation

- Pneumatics is inevitable in numerous branches
- Compressed air is a costly medium for energy transmission
- Competitiveness to electromechanical drives depends more and more on energy efficiency
- Energy efficiency of pneumatic drives is difficult to assess:
 - one compressor, many consumers
 - various load cases for pneumatic cylinders
- Splitting the energy flow between compression and consumption

Motivation

Reduce power demand per delivered m³ of compressed air:

- heat recovery
- high-performance oil-cooled compressors
- matching demand with delivery
- leakage-free infrastructure
- properly sized infrastructure (min. pressure drop)

Reduce air consumption:

- Properly sized pneumatic drive
- Minimization of volumes between valve and cylinder
- Application of energy saving measures
 - retrofitting of an oversized cylinder (pressure regulator)
 - in load-free direction
 - for high-dynamic motion tasks (no force in the end position)

Motivation

Reduce power demand per delivered m³ of compressed air:

- heat recovery
- high-performance oil-cooled compressors
- matching demand with delivery
- leakage-free infrastructure
- properly sized infrastructure (min. pressure drop)

Reduce air consumption:

- Properly sized pneumatic drive
- Minimization of volumes between valve and cylinder
- Application of energy saving measures
 - retrofitting of an oversized cylinder (pressure regulator)
 - in load-free direction
 - for high-dynamic motion tasks (no force in the end position)

...and that's all?

Concept of the closed-circuit systems

Thermodynamics of compression

Adiabatic compression

 Adiabatic compression 		
	open circuit	closed circuit
Compression work:	204 kJ	96 kJ

Concept of the closed-circuit systems

Thermodynamics of compression

Concept of the closed-circuit systems

Thermodynamics of compression

State of art Closed circuit? Pros & cons

- + Feasible reduction in energy consumption
- + Decrease in compression temperature
- + Higher delivered mass flow rate

- Additional low-pressure piping
- Need in automatic leakage compensation
- Slightly less attractive for compressor plants with heat recovery
- Depending on form of air consumption profile: need in extra air storage or compressor delivery control
- No design methods currently existing

State of art Closed circuit? Pros & cons

- + Feasible reduction in energy consumption
- + Decrease in compression temperature
- + Higher delivered mass flow rate

- Additional low-pressure piping
- Need in automatic leakage compensation
- Slightly less attractive for compressor plants with heat recovery
- Depending on form of air consumption profile: need in extra air storage or compressor delivery control
- No design methods currently existing

The concept of the closed circuit is already known, however:

- no experimental evidence of benefits
- doubts about pneumatic system behavior and control
- missing quantification of economic profit for an end-user

Addressed as goals of the study

Tested unit:

• Oil-free, one-stage, double-piston compressor

U

- Asynchronous Motor 220 V Net power 500 W
- Max. discharge pressure 8 bar_{rel}, max delivery 89 Nl/min

Test circuit with continuous air consumption (throttling)

 ρ_3 U

Energy Efficiency Analysis and Experimental Test of a Closed-Circuit Pneumatic System Fedor Nazarov, Chair of Fluid-Mechatronic Systems WIEFP 2022, November 22-23, 2022

Ŵ, n

Measurement results

Summary

• Vol. flow rate increase of >250 % (9 \rightarrow 23 Nl/min)

Measurement results

Summary

- Vol. flow rate increase of >250 % (9 \rightarrow 23 Nl/min)
- Power demand increase of < 45 % (610 \rightarrow 890 W)

Measurement results

Summary

- Vol. flow rate increase of >250 % (9 \rightarrow 23 Nl/min)
- Power demand increase of < 45 % (610 \rightarrow 890 W)
- Vol. efficiency increase of >40 % ($0.5 \rightarrow 0.7$)

Measurement results

Summary

- Vol. flow rate increase of >250 % (9 \rightarrow 23 Nl/min)
- Power demand increase of < 45 % (610 \rightarrow 890 W)
- Vol. efficiency increase of >40 % ($0.5 \rightarrow 0.7$)
- Efficiency increase of >65 % (0.125 \rightarrow 0.21)

Measurement results

Summary

- Vol. flow rate increase of >250 % (9 \rightarrow 23 Nl/min)
- Power demand increase of < 45 % (610 \rightarrow 890 W)
- Vol. efficiency increase of >40 % ($0.5 \rightarrow 0.7$)
- Efficiency increase of >65 % (0.125 \rightarrow 0.21)
- Reduction in specific power of >65 % $(1,1 \rightarrow 0,65 \text{ kWh/m}^3)$

Nenndruck [bar rel.]

Test circuit with discontinuous air consumption

- Simultaneous operation of cylinders:
 with inertial load
 - against constant force
- different load profiles V(t):
 base load: high-frequency & lowamplitude oscilations
 - peak load: low frequency & high-amplitude

Load specification	Horizontal cylinder H, Ø32×200	Vertical cylinder V, Ø50×200
Handled mass m, [kg]	10	65
Force, F _{ext} // F _{restr} , [N]	0 // 0	640 // -640
Travel time, t _{ext} // t _{retr} , [s]	0.34±0.02 // 0.44±0.03	<3 // <3

Measurement results, $p_1 = p_{atm}$

p _{1.mean} , [bar _{rel}]	0	
Δp, [bar _{rel}]	4.07	
Δp _{cyl} , [bar _{rel}]	3.93	
t _{H.takt} , [s]	2.8	
t _{v.takt} , [s]	14	
t _{H.ext} , [s]	0.36 0.37	
t _{H.retr} , [s]	0.43 0.46	
t _{v.ext} , [s]	2.3 2.65	
t _{v.retr} , [s]	2.64 2.65	
Ŵ _{mean} , W]	620	
\dot{V}_3 , l/min]	10.1	
η _{cyl} , [-]	0.107	

Measurement results, $p_1 \approx 0.5$ bar_{rel}

p _{1.mean} , [bar _{rel}]	0	0.59
Δp, [bar _{rel}]	4.07	4.52
Δp _{cyl} , [bar _{rel}]	3.93	4.42
t _{H.takt} , [s]	2.8	1.8
t _{v.takt} , [s]	14	10
t _{H.ext} , [s]	0.36 0.37	0.33 0.34
t _{H.retr} , [s]	0.43 0.46	0.41 0.43
t _{v.ext} , [s]	2.3 2.65	1.64 1.67
t _{v.retr} , [s]	2.64 2.65	2.74 2.77
Ŵ _{mean} , W]	620	720
Ż₃, l/min]	10.1	15.2
η _{cyl} , [-]	0.107	0.155

Measurement results, $p_1 \approx 1 \text{ bar}_{rel}$

p _{1.mean} , [bar _{rel}]	0	0.59	1.17
Δp, [bar _{rel}]	4.07	4.52	4.82
Δp_{cyl} , [bar _{rel}]	3.93	4.42	4.52
t _{H.takt} , [s]	2.8	1.8	1.4
t _{V.takt} , [s]	14	10	7
t _{H.ext} , [s]	0.36 0.37	0.33 0.34	0.33 0.34
t _{H.retr} , [s]	0.43 0.46	0.41 0.43	0.42 0.45
t _{v.ext} , [s]	2.3 2.65	1.64 1.67	1.61 1.69
t _{v.retr} , [s]	2.64 2.65	2.74 2.77	2.84 2.85
Ŵ _{mean} , W]	620	720	851
<i>\\</i> v_3, \ /min]	10.1	15.2	20.2
η _{cyl} , [-]	0.107	0.155	0.181

Energy Efficiency Analysis and Experimental Test of a Closed-Circuit Pneumatic System Fedor Nazarov, Chair of Fluid-Mechatronic Systems WIEFP 2022, November 22-23, 2022

 p_1

 p_2

 p_{H}

Ŵ

·X_H

Measurement results, $p_1 \approx 1.5 \text{ bar}_{rel}$

p _{1.mean} , [bar _{rel}]	0	0.59	1.17	1.5
Δp, [bar _{rel}]	4.07	4.52	4.82	4.41
Δp_{cyl} , [bar _{rel}]	3.93	4.42	4.52	4.04
t _{H.takt} , [s]	2.8	1.8	1.4	1.1
<i>t_{V.takt}</i> , [s]	14	10	7	6.2
t _{H.ext} , [s]	0.36 0.37	0.3 3CO 0.34	nst 33 0.34	0.33 0.35
t _{H.retr} , [s]	0.43 0.46	0.47 CO 0.43	nşt₄₂ 0.45	0.43 0.46
<i>t_{v.ext},</i> [s]	2.3 2.65	1.6 ÃCO 1.67	nst _{.61} 1.69	1.95 1.96
t _{V.retr} , [s]	2.64 2.65	2.7 4 0 2.77	n <u>st_{.84}</u> 2.85	2.76 2.8
₩ _{mean} , W] ──	6 20	720	851	906
<i>॑</i> V ₃ , l/min]	10.1	15.2	20.2	24.8
η _{cy/} , [-]	0.107	0.155	0.181	0.184

Energy Efficiency Analysis and Experimental Test of a Closed-Circuit Pneumatic System Fedor Nazarov, Chair of Fluid-Mechatronic Systems WIEFP 2022, November 22-23, 2022

 p_1

 p_2

 p_{H}

Ŵ

·X_H

Summary & Outlook

Potential applications

ideal system: **24 %** vs. simple demonstrator **18.4 %**

Closed circuit enables cost-effective exploitation of advantages of the decentralized air supply:

- No expensive piping infrastructure, easily extendable, low pressure losses, low probability of leakage appearance
- small industrial compressor in closed circuit can be more efficient than a large high-end compressor in open circuit
- Low local noise emission
- Modular & plug&play-capable
- Leakage ratio $\rightarrow 0$
- Easy & transparent energy monitoring

Energy Efficiency Analysis and Experimental Test of a Closed-Circuit Pneumatic System Fedor Nazarov, Chair of Fluid-Mechatronic Systems WIEFP 2022, November 22-23, 2022

Slide 26

Summary & Outlook

Potential applications

- Closed-circuit system operates without any disturbance
- Transition times t_{ext} and t_{retr} of both cylinders are repeatable and reach the desired values
- Both dynamic and force tasks performed perfectly
- Compressor delivery rate 2.5 times higher (\rightarrow compressor downsizing possible)
- Increase in total efficency in 72 %: from 10.1 % to 18.4 %
- Lower noise level in the closed-circuit operation

Outlook for further research:

- Cost-efficient strategies for compressor delivery control
- Methods for integral system design: compressor and motor sizing, filling pressure and air reservoir estimation basing on the data about the operation cycle
- Automatic compensation of inevitable leakage (e.g. in rod sealings)

Thank you for your attention!

Technische Universität Dresden | Institut für Mechatronischen Maschinenbau Professur für Fluid-Mechatronische Systemtechnik Prof. Dr.-Ing. J. Weber | Tel. 0351- 463 33559 | fluidtronik@mailbox.tu-dresden.de

