

A Novel Multi-pump System for Hydraulic Actuation in Electric Mobile Machinery

Artur Tozzi de Cantuaria Gama, Linköping University

Kim Heybroek, Volvo CE

Liselott Ericson, Linköping University

6th Workshop on Innovative Engineering for Fluid Power November 22-23 – São Paulo – Brazil – 2022

- Research background and motivation
- Pump-controlled systems
- Multi-pump system proposal
- Goals and next steps

NOVEMBER 22-23 SÃO PAULO BRAZIL

- Global emission reduction goals to be reached until 2050¹
- Industry emissions:
 - Construction industry: 20% of global emissions² (6% of the 20%, 315 million tons of CO2, is from fossil fuels consumption³)
 - Mining industry: 4-7% of global emissions⁴
- Development of hybrid and fully electric machines is one option to reduce the direct emissions

- New opportunities and challenges for the actuation systems
- Improving systems efficiency is desirable because of the limited battery capacity

 ¹ https://www.un.org/en/climatechange/net-zero-coalition
² Research Report: Carbon Footprint of Construction Equipment. European Rental Association, Climate Neutral Group, 2019
³ Huang, L., Renewable and Sustainable Energy Reviews (2017), http://dx.doi.org/10.1016/j.rser.2017.06.001
⁴ Here's how the mining industry can respond to climate change. McKinsey Sustainability, 2020. Accessed in 14/11/22: https://www.mckinsey.com/capabilities/sustainability/our-insights/sustainability-blog/here-is-how-the-mining-industry-can-respond-to-climate-change

Shared pump solutions: open-centre, <u>load-sensing</u>

- Losses are still present when multiple loads are still used
 - For load-sensing: Separating the loads could reduce the losses

- Remove or limit the use of throttling valves
- Digital Displacement Pump (DDP) from Danfoss
 - Can be seen as 4 smaller *pumplets*
 - Speed and displacement can be controlled

- Electro-Hydrostatic Actuators (EHAs)
 - Control pump and/or electric motor

A Novel Multi-pump System for Hydraulic Actuation in Electric Mobile Machinery

Multi-pump system proposal

- With battery-powered vehicles we could have one EHA for each actuator
 - Each pump would have to be sized to provide the maximum flow for the actuator: <u>total power would be</u> <u>higher</u>
 - On excavators and wheel loaders the system would often operate at partial load: <u>lower efficiency</u>
- With multiple smaller pumps we could:
 - Select a different combination of pumps for each actuator
 - Lower total power: not all actuators should operate at maximum power at the same time
 - Control strategies can be implemented to keep the operating pumps working at high-efficiency points
 - Identical machines could reduce overall production costs

Multi-pump system proposal

- Combine variable-speed electric motors with fixed pumps
 - VSD: variable speed drive

• Modularity: number of pumps used can change depending on number and size of actuators

• High number of components to operate simultaneously. Considering the simple on/off valves:

 $n_v = (n_p - 1)(2 + 4n_a)$

- 2 actuators + 4 pumps: 30 valves
- 4 actuators + 8 pumps: 126 valves
- The total number of valves could be reduced by using, for example, a 4/3 directional valve
- How to decide on the number and size of pumps?
- How to reduce the overall number of valves?
- How to control this system?

- Evaluate the benefits of using multiple smaller pumps with variable speed
- Dynamic programming: find the optimal solution
 - Estimate the system's maximum efficiency
 - Identify points of improvements, for example:
 - Redundant valves
 - Some loads may not require the maximum number of pumps
 - Control strategies: sequential or summative
- High number of components: evaluate the use of artificial intelligence for control

A Novel Multi-pump System for Hydraulic Actuation in Electric Mobile Machinery

Artur Tozzi de Cantuaria Gama, Linköping University artur.tozzi@liu.se