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Prognostics Definition

* Prognostics = A prediction of the occurrence of some event
of interest to the system
« This event could be
— Component failure
— Violation of functional or performance specifications
— Accomplishment of some system function
— End of a mission
. anything of importance you want to predict, because
that knowledge is useful to a decision
 What this event represents does not matter to the
framework
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Prognostics Framework
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The Science of Predicting RUL

 RUL: Remaining Useful Life
— Model underlying physms of a component/subsystem

Pncumene P e B \ ) R “. - Pz e A > (20)
% ;f ((t)} f((zi((r; ()) N E ) B E L 0=l ety )
— Model physics of damage propagation mechanisms
Sl

— Determine criteria for End-of-Life Threshold

sssssssssss

EOL(tp) 2 argmin Cpor(x(t), (1)) = 1

t>tp

— Develop algorithms to propagate damage into future

Algorithm 2 EOL Prediction
Inputs: {(x,.8}), wi, },
Ou uputs: [!:,(JL p}‘.‘:\
fori =1 to N do

.'.' — kp

— Deal with uncertainty =~ %l

10/26/2016 "



Goals for Prognostics

What does prognostics aim to achieve?
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* Prognostics goals should be defined from users’ perspectives
« Different solutions and approaches apply for different users
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Prognostics

Setting up the Problem
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Problem Formulation
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Interested in predicting
threshold condition £

System starts at some state in
region A, eventually evolves to
some new state at which £

occurs and moves to region B

T, defines the boundary
between 4 and B

Must predict the time of event £,
k., and the time until event E,
Ak
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Problem Formulation

» System described by

x(k+1) = f(k,x(k),0(k),u(k), v(k))
y (k) = h(k,x(k), 0(k), u(k),n(k))

— x: states, 0: parameters, u: inputs, y: outputs,
V. process noise, n: Sensor noise
* Define system event of interest £

* Define threshold function, that evaluates to
true when E has occurred

Tp(x(k),0(k), u(k))
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Problem Formulation

10/26/2016

Define &,

kep(kp) 2 inf{k € N: k> kp A Te(x(k).0(k), u(k)) = 1}
Define 4k,

Akp(kp) 2 kg(kp) — kp
May also be interested in the values of some
system variables at £,

z(k) = (k. x(k), 0(k), u(k))
ZE(A’P) £ Z(}i}j(kp))

AZEU‘CP) = ZE(,{p) — Z(’i‘p)
Goal is to compute k., and its derived variables

10



Uncertainty

» Goal of prognostics algorithm is to
predict true distribution of 4, A

— A misrepresentation of true
uncertainty could be disastrous
when used for decision-making

* Prognostics algorithm itself adds
additional uncertainty

— Initial state not known exactly

— Sensor and process noise
(stochastic processes with

plkg)

unknown distributions)
— Model not known exactly

— System state at &, not known
exactly

— Future input trajectory distribution
not known exactly

10/26/2016
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Prognostics Architecture

System receives inputs, Estimate current state

produces outputs and parameter values

‘( > p(x(k), O(k)ly (ko kp)) p(ke(kp)ly (ko:kp))
System —> Estimation Prediction >

SN— f

p()\e) p(Au) p()l\v)

Use surrogate variable Predict probability

distributions distributions for k,, Ak

« System gets input and produces output
« Estimation module estimates the states and parameters, given system
inputs and outputs

— Must handle sensor noise and process noise

* Prediction module predicts 4,
— Must handle state-parameter uncertainty at 4,
— Must handle future process noise trajectories and input trajectories

wee0ts — Adiagnosis module can inform the prognostics what model to use 12



Modeling

What needs to be modeled?
What features do models need?
What are the modeling trade-offs?



What Kind of Models?

« Models for prognostics require the following features
— Describe dynamics in nominal case (no aging/degradation)
— Describe dynamics in the faulty/degraded/damaged case
— Describe dynamics of aging/degradation

« What are the dynamics
describing discharge?

* What model parameters
change as a result of
aging?

 How do the aging
parameters change in
time?

Health

10/26/2016 14



Estimation Algorithms

How can the system state be estimated?
How does fault diagnosis fit in?
How is uncertainty in estimation handled?



Estimation Problem

 First problem of prognostics is state-parameter estimation
— What is the current system state and its associated uncertainty?
— Input: system outputs y from &, to &, y(k,:k)
— Output: p(x(k), 0(k)|y(k:k))
* There are several algorithms that accomplish this, e.g.,
— Kalman filter (linear systems, additive Gaussian noise)
— Extended Kalman filter (nonlinear systems, additive Gaussian noise)

— Unscented Kalman filter (nonlinear systems, additive Gaussian
noise)

— Particle filter (nonlinear systems)

10/26/2016 16



Prediction Algorithms

How is uncertainty represented concisely?
How is uncertainty folded into prediction?
What algorithms are used for prediction?



Prediction Problem

* Most algorithms operate by simulating samples forward
In time until £

» Algorithms must account for several sources of
uncertainty besides that in the initial state

— Arepresentation of that uncertainty is required for the selected
prediction algorithm

— A specific description of that uncertainty is required (e.g., mean,
variance)

— Usually no closed-form solution

10/26/2016
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Prediction

10/26/2016

The P function takes an initial state,
and a parameter, an input, and a
process noise trajectory

— Simulates state forward using f until £ is
reached to compute &, for a single
sample

Top-level prediction algorithm calls P

— These algorithms differ by how they
compute samples upon which to call p

Monte Carlo algorithm (MC) takes as
input
— Initial state-parameter estimate

— Probability distributions for the surrogate
variables for the parameter, input, and
process noise trajectories

— Number of samples, N
MC samples from its input distributions,
and computes £,
The “construct” functions describe

how to construct a trajectory given
surrogate variable samples

Algorithm 1 kg (kp) < P(x(kp), Okp, Urp, Vip)

[am—

[Ny B

S AR

k «— .P'i‘-p
x (k) + X(k‘-p%
while 7z (x(k), Ok, (k), Uk, (k) = 0 do
x(k +1) « £(k,x(k), Okp (k). Urp (F), Vip (F))
k+—k+1
x(k) + x(k+1)
end while
kE(kp) — k

Algorithm 2 {kV3N = mMC(p(x(kp).O(kp)|y(ko:kp)).

P(Xo). p(Au). p(Av).N)

1: forz—ltoNdo

2 (xW(kp),89(kp)) ~ p(x(kp),0(kp)|y(ko:kp))

30 A ~p(Re) _

4 @E:’; — CDHStIUCtC‘)(AE;), 0 (kp))

50 AV ~ p(Aw)

6: US; — ConstructU(z\Ef))

7. A ~p(A)

8 V,(:; « constructv(AY)

- g < P(xV(kp).©) U, VD)
10: end for
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It’ll Break at this Time:
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* Damage progression, EOL prediction

Probability

Friction Coefficient (Ns/m)

EOL Probability Mass Function
50 60 70 80 90 100 110 120 130 140
x 10°
Damage Threshold
Predicted Trajectories
T T T T T T T T 1
50 60 70 80 90 100 110 120 130 140

Time (cycles)
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Application Example

How is this done in practice?



Model Development

Models developed include[ TSE=S}
— Centrifugal Pumps T
— Cryo Valves (RO valves)

— Filters
— Pressure Regulators '
— Solenoid Valves

10/26/2016



Propellant Loading System

Pneumatic
Valves

e N LAVE )

am ‘“’ . t

Cross-Cour nm\
Lines

Prognostics Center of Excellence
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Discrete Control (DV) Valve

* Apply framework to pneumatic valve in propellant loading

system
— Complex mechanical devices used in many domains including
aerospace
— Failures of critical valves can cause significant effects on system
function .
. Pneumatic ~ _ _
* Valve operation Port ~a

_ - Piston

= The valve is opened by filling the
chamber with gas up to the
supply pressure

= Evacuating the chamber above
the piston down to atmospheric
pressure

= Return spring ensures valve will
close upon loss of supply
pressure

_ - Return Spring

Fluid Flow

10/26/2016



Fault Matrix

Component Fault Mode

Effects

Injecting Component

Solenoid Valve  Leak across NC seat

Leak across NO seat

If SV energized, and DV valve is open, no effect; if DV valve
is closed, no effect. If SV de-energized, and DV valve is closed,
DV valve potentially opens; if DV valve is open, DV closes more
slowly

If SV energized, and DV valve is open, loses pressure and DV can
start to close; if DV valve is closed, it will open more slowly. If
SV de-energized, and DV valve is closed, no effect; if DV valve
is open, will close more slowly

V2

Vi

/——Lch al cylinder port

Same as leak across NC seat

DV Pneumatic gas leak at valve port Same effects as leak at SV cylinder port or leak across NO seat Vi

\‘I‘P‘F\Leak al output port Lowers regulated signal pressure which affects the open time of V3
the CV

Ccv Pneumatic gas leak at supply pressure port  Lower supply pressure so valve may not open fully, open more V4
slowly

Pneumatic gas leak at signal pressure port  Lowers regulated pressure V3

Li-ion Battery Additional resistance Reduced charge leaves the DV unable to actuate properly R1

10/26/2016



Pneumatic Valve Modeling

Valve Position Valve Flow

« Piston movement governed

by sum of forces, including 0.1
— Friction z

— Spring force £ 005
— Contact forces E
o

— (Gas pressures
— Fluid pressures

« Mass flows determined by 0 10 2 30 0 10 20 30
choked and non-choked gas Time (s) Time (s)
flow equations for orifices Top Gas Pressure Bottom Gas Pressure

 Nominal operation

— Opens and closes within 15
seconds

— Valve closes completely upon
loss of supply pressure

Pressure (MPa)

0 10 20 30 0 10 20 30
Time (s) Time (s)
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Valve Modeling

Some equations

— Pressures p(t) and py(t) ;)= mORT
S Vi + AL — (1)
_— my(t)RgT

- Vi, + Ap-'l’(t)

— Gas flows fr(6) = £, (pe(t), ue(t))
fo(t) = fo(pu(t), us(t)).

fo.e(P1,p2) = Csﬂspl\/zi? (a,-il) h

— Fluid flow through valve f.(t) = l;ét} CvAv\/ 2lps — pyrlsien(ps — pyr)

— Choked flow

Valve Position Top Gas Pressure - Valve Flow " Bottom Gas Pressure

0.04 G 1.5 61
—_ = - =

£ S 4 2 S 4
g 002 2 b o

E 5 21 E 0.5 g 24
- &

0 0 y 0 0
0 5 10 15 20 ] 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time (s) Time (s) Time (s) Time (s)
10/26/2016
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Modeling Damage

oo Input Reference vooove Input Reference 0 e Input Reference e Input Reference
= = =Nominal Friction = = =Nominal Spring = = =No Internal Leak = = =No External Leaks
''''' Increased Friction =+=Damaged Spring +==Small Internal Leak +=+= Small Top External Leak
= Friction at 1 = Spring at k' Internal Leak at Aj Top External Leak at A: .
0.1 0.1 0.1
~ 0.08 ~ 0.08 _ I _
g E z 008 = 0.08
E 0.06 g £ 0.06; £ 0.06
Z 0.04 Z £ 0.04} £ 0.04
L S 5} g
0.02 ~ = 0.027 &~ 0.02
0 0 0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Time (s) Time (s) Time () Time (s)
® Based on sliding wear ® Based on sliding wear ® Based on sliding wear ® Based on
equation equation equation environmental factors
® Describes how friction ® Describes how spring e Describes how leak such as corrosion
coefficient changes as constant changes as size changes as e Assume a linear
function of friction function of spring function of friction change in absence of
force, piston velocity, force, piston velocity, force, piston velocity, known model
and wear coefficient and wear coefficient and wear coefficient
r(t) = we[Fr(t)o(t)] k() = —we|F(Ov(0)] Ai(t) = wil Fy(t)v(t)] Ac(t) = we
10/26/2016
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Damage Progression

X 106 Damage Progression of Friction Coefficient X 104 Damage Progression of Spring Constant
r r 10
x 10° | / ] \ x 10°
35y / T(t) — w7‘|Ff (t)’U(tH o 20 \—\ |
E 3 _/_/ —_ \ 6.9
2 / £ N\, 6.88 L"\ ,
< .5 / 2 6.86 =
& € 6.84
s 2 40 41 @ 7 40 44
S // 8
c 15 o
§ ~ £ 6 <
'U‘E_) 1 ’_/‘J ? \
5 s
05 F#__/j -
0 k(t) — —wk‘FS(t)U(t)‘ 4
0 20 40 60 80 100 0 20 40 60 80 100
Time (cycles) Time (cycles)
6 Damage Progression of Internal Leak . -5 Damage Progression of Top External Leak
x 10 x 10
2 _ 3
Ai(t) = wi|Fy(t)v(1)|
e € d
< 15 E /
8 < v
< 5 /
5 1 7 415
[9]
s x 10 = /
© 1S
£ 7 2 e
*2 0.5 / AQ ;——/_I - . /
= 0. 6:9 Q
/ v oo ) A " os g
40 41
0 ; 0
0 20 40 60 80 100 0 20 40 60 80 100
Time (cycles) Time (cycles)
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Failure Injection Testbed

i~ Power Supply E | Suonl Supply pressure
xternal Supply
: E \ ;l:e_:_s Ef}x_}zply @------- :&‘ S l ________ Supply Current AloAtm
1 3 ‘;:D ‘.]-3-;;t-tic-1:y-kl Battery/:l:::-s-t“ : 1 E SV Te S t b e d
: 111 R R i Supply 1 1 E
1 i 1 H | ! L )
= 1 I J'
1 1 e ol o o e ) o e e e e e = e = = = = R
INI DA (]
: Qoo R-vsi il
i -
] O R S R 1o =
1 AIO ey L il Al il BS
I L I 1}
1 LAN| Temperatureft = =' :l : : I :.
1 T -
! i
1 |: 1 : [P 5 O e
: : 1 : 1 Supply Current
! i 1= v
1t

1 ¥ PR S -
1 1 1! 1
1 I I: Supply pressurel :
: i IPT -
. N - ==

1 £ i)
: : : ! L&="Outlet | 1 “ :

1 EES N |
. : : . : ﬁ :_pressureJl—_- =
1
1 1
1
1

Control Room

----------- Electrical Signals

Pneumatic Lines
-------- DAQ Lines

Schematic
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Atmospheric Leak Fault

l Supply pressure
« Fault emulates a leak at the Leak at Supply
. . Inputyort To Atm
solenoid cylinder port or, when A
energized, a leak across the Solenoid Vaive & [} (
NO seat M i i

* Fault injected using
proportional valve V1 (at 1%
per cycle)

Leak across Normally l
+ Affects the closing time of RO Open (NO) seat

due to decreased supply
Pneumatic gas leak RO
pressure. at valve port \\
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Experiments and results
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Leak from Signal

CV open times

10 -~~~ ——— —
EOL Threshold
9.51
e
g
z 9
5
=)
g
= 8.5 5
R ‘ o 0 00
g |Detection Threshold o P 0%
o0
00 O o ©O o O g QO
O, © o 0 00"Co O
754° 0 2 9 o ” ©
0 10 20 30 40 50
Cycles

Steady State % values

1.005

—

<o
o)
O
"

0.99 7

<
\O
o0
Ch

0.98 1

0.975 1

CV steady state position

+coconouneotoc iMESs
07 90500
Poo. -
| Detection Threshold  “o -
©
%
e
e
o)
o)
00
o
O
Co
EOL Threshold Fault Detection
0 10 20 30 40 50
Cycles

 Steady state position threshold detected at 38t cycle
* Relatively no change observed in the open time values
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Leak from Supply

CV open times

"leor Threshoa 0 o
9.5
e R
£ 91 Fault Detectlon: o
= -
g :
S 8.5 °
2 o
= o :
A g |DetectionThreshold _ __ _ ____ __ o_I____
&
7.5 O . O “o
: ® o
OOOO 0’ 00 0 0g o OO ©
% oo % o °
0 10 20 30 40 50
Cycles

Steady State % values

CV steady state position times

- )
000000 00P0e006Pa0000,20000:00 0P tero .
9 70 000g,

IDetection Threshold

0.995

0.99 1
0.985 -

098
0.975

EOL Threshold Fault Detection
0 10 20 30 40 50
Cycles

« Open time changes and fault detected at 43 cycle
* Relatively no change observed in the steady state values
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RUL Estimation a-A Plot

CV Signal fault

60 - -
* EFault Detection
) b ~ N +0L ;
_ 40 R é
£ —0 N :
S - :
2 30 S :
- ~ -
-] ~ z
o S :
20- ~ :
10 D
éOQOOO\ «
: Qg
0 T T T T %%\j
0 10 20 30 40 50
Cycles
* a—A is a performance metric for prognostics
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50~

=,
]
|
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20+

CV Supply fault

éFault Detection

10

20 30
Cycles

After fault detection within couple of cycles prediction in cone
Model prediction accurate for both injected faults



Summary
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Predicting Time to Failure
— Promises to have significant benefit
— Rigorous Modeling required
— Dealing with uncertainties important
— Validation difficult

Decision-Making
— Act on remaining life information

— Based on Prognostic horizon:
» Fail-Safe Mode
» Controller Reconfiguration
« Mission Re-planning
« Maintenance Scheduling

Resources

— Run-to-Failure Data Sets

« Data repository
— https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

— Algorithms & Models

« Open Source
— https://github.com/nasa/PrognosticsModelLibrary
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Prognostics in Action

Channel 4

|
1500 2000
Time (secs)
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Last slide
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