

FPNI Ph.D. Symposium on Fluid Power

OCTOBER 26-28 · FLORIANÓPOLIS-SC · BRAZIL 2016

HARBIN INSTITUTE OF TECHNOLOGY

Pneumatic Control microfluidic systems and applications

Department of Fluid Control and Automation Harbin Institute of Technology, Harbin, China

Contents

1	Background
2	Pneumatic off-chip valves
3	Pneumatic microvalves and systems
4	Applications
5	Conclusions and outlooks

哈爾濵2業大學

Chip size: several cm² Micro-channel network Controllable fluidic system

Lab on a chip

All kinds of functions

Chemical reaction, biomedical analysis Drug delivery

哈爾濱工業大學

Pneumatic microfluidic chips

large scale integrated pneumatic microfluidic chips

Quake's Group, Stanford University, 2000 Large scale integrations with hundreds pneumatic micro valves and actuators

哈爾濱工業大學

哈爾濱工業大學

Schematic of a pneumatic actuated multilayer microfluidic chip with its pneumatic supporting systems

To make the off-chip supporting devices smaller, portable and easily to be integrated with the chips

Prof. Whitesides, Harvard University

哈爾濱二葉大學

PDMS valve body + low cost actuation

Advantages:

- PDMS valve body, smaller friction force on the spool
- Better sealing
- Better to be linked with the chip
- Rapid prototyping

Schematic design of the electromagnetic actuator (a), 1.plastic housing; 2 forromagnetic shall: 3 coil: 4-static iron: 5 moving iron: 6 return

2. ferromagnetic shell; 3.coil; 4=static iron; 5.moving iron; 6.return spring; 7.positioning pins; 8.fixing device; 9.glass slide; 10.valve core.

Schematic design of the microvalve in open state (left) and closed state (right)

PDMS	Property	Consequence
Optical transparent	UV cutoff 240 nm	Optical detection: 240 - 1100 nm
electrical insulating	Breakdown voltage 2x10 ⁷ V/m	Allow embeded circuits
Mechanical	Elastomeric	Allow actuation by reversible deformation
Thermal insulating	0.2 W/(m∙K) Thermal expansion: 310 μm/(m∙ ⁰C)	Thermal insulator Hard to release heat from electrophoresis
Interfacial	low surface free energy 20 erg/cm ²	Easy to seal and adhere to other materials
Permeability	Impermeable to liquid water, but permeable to gases	Can handle liquid solution inside channels, allow gas transport
Reactivity	Inert, but can be oxidized by exposure to plasma	Not reactive to most reagents Surface modifiable
Toxicity	Non-toxic	Can be implanted and work with living organisms
		1 哈爾濱工業大学

N S F C

HARBIN INSTITUTE OF TECHNOLOGY

哈工大

Driving methods of the PDMS pneumatic off-chip valve

哈爾濵工業大学

The packaged Electromagnetic actuator

Stainless PDMS block with Electromagnetic Valvesteel tube air channel actuator membrane

The packaged the off-chip valve

哈爾濱工業大學

Structure and working principle of the on-chip microvalve

closed state of the membrane microvalve

哈爾濱工業大學

Structure of the PDMS pneumatic pressure driven microvalve

哈爾濵工業大学

3.2 Multi-physical fields coupling mechanism and mathematic models researc

PDMS actuated membrane deflection mathematic model and characteristics analysis

(a) Undeformed configuration of 1/4 structure; (b) Deformed configuration of 1/4 structure; (c) Cross-sectional view $(p_{md} < p_{close})$; (d) Cross-sectional view $(p_{md} \ge p_{close})$; (e) Longitudinal sectional view $(p_{md} = p_{close})$; (f) Longitudinal sectional view $(p_{md} > p_{close})$.

conclusion:

Large deformation theory;
Nonlinear characteristics;

$$\delta_{max} = \frac{w_m}{4} \left[\frac{3p_{md} w_m (1 - v_m^2)}{Eh_m} \right]^{\frac{1}{3}}$$

$$V_m = \frac{2l_m w_m \delta_{max}}{3}$$

3. Uniform deformation in length.

Flow rate mathematical model of the on-chip microvalve under different valve-openings and calculation analysis

Size of the valve port of the on-chip microvalve

Theoretical calculated liquid flow rate with different valve-openings of the on-chip microvalve (µL/min)

Cross-section area

$$A = \frac{2a}{3}(b - b_0)$$
$$q = C_d A \sqrt{\frac{2\Delta P}{\rho}}$$

Driven liquid pressure kPa Pneumatic pressure kPa	10	20	30
0	2.05×10^{3}	1.85×10^{3}	1.72×10^{3}
10	1.87×10^{3}	2.89×10^{3}	2.26×10^{3}
20	2.13×10^{3}	3.74×10^{3}	3.54×10^{3}
30	1.62×10^{3}	3.01×10^{3}	5.61×10^{3}
40	1.14×10^{3}	2.26×10^{3}	3.69×10^{3}
50	0.69×10^{3}	1.61×10^{3}	2.80×10^{3}
60	0.30×10^{3}	0.98×10^{3}	1.97×10^{3}
70	0	0.42×10^{3}	1.20×10^{3}
80	0	0	0.52×10^{3}
90	0	0	0

哈爾濱工業大學

Model of the actuated chamber with variable volume

哈爾濱工業大學

Numerical calculation results of response time for TBC under different pressures, the initial differential pressure is 10kPa, 52kPa, 90kPa, 120kPa, 150kPa, separately

Composite controller: Bang-Bang+P+PWM composite controller

哈爾濱二葉大學

S

哈爾濱二葉大學

Experimental research

Schematic diagram of performance measurement for the off-chip microvalve

Comparison between the spool actuated force results

NO	Parameters	Valves
1	Experiment /N	0.844
2	Simulation / N	0.88 1
2	Theory /N	0.983
3	Design demand /N	0.220

Flow rate under fully open

(in the second s

Measurement results when differential pressure is 50kPa

哈爾濱工業大學

HARBIN INSTITUTE OF TECHNOLOGY

Experimental results compared with the theoretical calculation and FEM results of the PDMS actuated membrane maximum deflection versus different pressures with dimension $500\mu m \times 200\mu m \times 40\mu m$

Response time simulation results of the pneumatic micro actuator with different valveopenings of the electromagnetic microvalve 1

Dynamic response testing curves of the pneumatic micro actuator maximum deflection with the actuated part dimension 200µm×500µm

Microscope images of the PDMS actuated membrane deformations versus different pressures with the actuated part dimension 200μ m $imes500\mu$ m

Comparison between experimental results and theoretical calculation results about response time of the pneumatic micro actuator (valve-opening of the electromagnetic microvalve 1 is 20%)

充气压力(kPa)	16	52	90	120	150
Theoretical inflation time t_{I} (ms)	0	0	0	1.26	2.23
Theoretical inflation time t_{II} (ms)	9.69	16.01	20.65	21.86	23.05
Theoretical total inflation time $t(ms)$	9.69	16.01	20.65	23.12	25.28
Experimental total inflation time $t_s(ms)$	10.05	15.2	19.72	24.93	27.19
Error δ%	-3.72%	5.06%	4.52%	-7.85%	-7.55%

哈爾濱工業大學

Digital pressure gauge	Driven liquid kPa Pneumatic pressure kPa	10	20	30		
	0	85	189	240		
	10	93	200	274		
	20	75	226	310		
Liquid driven	30	45	112	374		
Pneumatic system	40	28	66	148		
system	50	12	42	93		
system	60	4	19	56		
Power supply	70	1	7	30		
	80	0	4	12		
Precision	90	0	1	5		
electronic	100	0	0	4		
scale	110	0	0	1		
Liquid inlet	120	0	0	0		
On-chip microvalve Liquid outlet Air inlet Test bench for liquid flow rate of the membrane	400 350 200 150 100 50		◆ 親選偉, P= 104Pa + 親選偉, P= 704Pa + 親選偉, P= 704Pa ◆ 課途偉, P= 704Pa + 親送偉, P= 704Pa - 親送偉, P= 704Pa			
microvalve	0 20	40 60 80	100 120			
		pressure (kPa)				

Liquid flow rates measuring results with different valve-openings of the membrane microvalve (µL/min)

Comparison between modified theoretical results and experimental datas about liquid flow rate of the membrane microvalve

Diagram of fluid driving setup

Compressed-air driven liquid system, a compressed-air driven liquid system is used for controlling the accurate differential pressure for the liquid microchannels, The compressed air system linked to the air channels is used for control the air pressure in the pneumatic actuators.

哈爾濱工業大學

amplification

card

Main performances

1.Less than accuracy 1kPa;
2.Working pressure 100kPa;
3.Responding speed (1ms<rt<1s);

Miniature pressure sensor XCQ-062 PCI-1710-CE data acquisition card Signal amplification

Experimental setup of PDMS pneumatic micro actuator of the onchip microvalve

pressure sensor

哈爾濱工業大學

with the 3-way microvalve

4 Applications

pneumatic micro mixing chip

Structure of the pneumatic micro mixing chip

PDMS actuated membrane motion in a cycle

Reagents motion of the micro mixing chamber in a cycle

4 Applications

Test bench for measuring the micro mixing chip performances

哈爾濱工業大学

4 Applications

哈爾濵2業大學

5 Conclusions and outlooks

Conclusions

- pneumatic microvalves can be easily integrated with microchips and fabricated if the valve body was made of PDMS.
- pneumatic microfluidic systems can be controlled by the PDMS microvalves to realize the pressure control below 200kPa.
- PDMS pneumatic microvalves can be applied in micro-mixer chips to improve the mixing efficiency.

Future work

- Improve the accuracy of the pressure control and responding speed.
- Make further integration of the valve group for large scale integration.
- To develop wireless and remote control model for microfluidic systems.

哈爾濱工業大學

FPNI Ph.D. Symposium on Fluid Power

OCTOBER 26-28 · FLORIANÓPOLIS-SC · BRAZIL 2016

HARBIN INSTITUTE OF TECHNOLOGY

Thank you for your attention!

lisongjing@hit.edu.cn