A Park - like transform for fluid power systems: application to pneumatic stiffness control

Prof. Eric Bideaux, INSA Lyon, Ampère Lab, France
Context & problematics

- Modeling and control of Fluid Power systems is usually considered as a difficult task:
 - **multiphysic**: mechanics, fluid dynamics, thermodynamics, electrical eng., …
 - highly non linear behavior

more difficult to control than electrical drives?

NO
Differences electric and fluid power drives (1/3)

Electric drives

- Desired command
- Angular position

Electric Power

High bandwidth
- Lot of sensors (current, voltage)
- Complex control algorithm embedded (large computation capacity)
- But everything is included !!!

Load

Low bandwidth
- High reflected inertia
- Complex friction phenomena
- Can be considered part of the load (disturbance)

The whole package is on-the-shelves !!!
Hydraulic drives

- Low bandwidth
 - ~ no sensor (mech/elec feedback)
 - each design is different
 - safety component have to be added

- High bandwidth
 - low inertia
 - nearly a integrator

Not user friendly

Help yourself !!!!
Other architectures of hydraulic drives

- **Mechanic Power**
 - Low bandwidth

- **Electric Power**
 - High bandwidth
 - Not user friendly

- **Fluid Power drives**
 - High bandwidth
Pneumatic drives

- High bandwidth
 - ~ no sensor (mech/elec feedback)
 - low efficiency
 - each design is different
 - safety component to be added

- Low bandwidth
 - low inertia
 - low pressure dynamic

Not user friendly

Help yourself !!!!
Why electrical drive are so user-friendly?

- **Servo/Prop. Hydraulic Act.**
- **EHA/ Displacement pump**
- **Nearly no computation capacity embedded**
 - **Not Plug & Play**
- **Servo Pneumatic Act.**
- **EHA/ variable speed**
- **Electric MA**

The intelligence is in the box

Plug & Play

User-friendly control
How to make the control easier?

- The physical variables are not always the best for control purposes:

 - **On mechanical side**

 \[
 \begin{align*}
 \frac{dv}{dt} &= \frac{S.(p_P - p_N) - F_{frot}(v) - F_{ext}}{M} \\
 \frac{dy}{dt} &= v
 \end{align*}
 \]

 \[F_{pneu} = S.(p_P - p_N)\]

 - **On fluid side (pneumatic)**

 \[
 \begin{align*}
 \frac{dp_P}{dt} &= \frac{k.r.T}{V_P} \left(q_{mP} - \frac{S}{r.T}p_P.v\right) \\
 \frac{dp_N}{dt} &= \frac{k.r.T}{V_N} \left(q_{mN} + \frac{S}{r.T}p_N.v\right)
 \end{align*}
 \]

 2 commands:

 \[
 \begin{align*}
 &q_{mP}(u_P, p_P) \\
 &q_{mN}(u_N, p_N)
 \end{align*}
 \]

 \[
 \begin{align*}
 u_N &= \psi^{-1}(q_{mN}, p_N) \\
 u_P &= \psi^{-1}(q_{mP}, p_P)
 \end{align*}
 \]
The AT transform (1/2)

- 2 different phenomena
 - The differential pressurization:
 \[
 \frac{d\Delta p}{dt} = \frac{dp_P}{dt} - \frac{dp_N}{dt}
 \]
 - The symmetric pressurization:
 \[
 \frac{dp_T}{dt} = \frac{1}{2} \left(\frac{dp_P}{dt} + \frac{dp_N}{dt} \right)
 \]

- Let us consider the following coordinate transformation:

 \[
 \begin{bmatrix}
 q_{mA} \\
 q_{mT} \\
 q_{mN}
 \end{bmatrix} = \Lambda(y) \cdot \begin{bmatrix}
 q_{mP} \\
 q_{mN}
 \end{bmatrix}
 \]

 \[
 \Lambda(y) = \begin{bmatrix}
 \frac{1}{V_P(y)} & \frac{1}{V_N(y)} \\
 \frac{1}{V_P(y)} & \frac{1}{V_N(y)}
 \end{bmatrix}
 \]

 \[
 \begin{cases}
 q_{mP} & \rightarrow q_{mA} = \text{active flow} \\
 q_{mN} & \rightarrow q_{mT} = \text{pressurization flow}
 \end{cases}
 \]

 * Note: this transformation can easily be extended to non-symmetric cylinder
The AT transform (2/2)

Make the really interesting variables appear in the equations

\[
\begin{align*}
\frac{dp_P}{dt} &= \frac{k.r.T}{V_P} \cdot (q_{m_P} - \frac{S}{r.T}p_P.v) \\
\frac{dp_N}{dt} &= \frac{k.r.T}{V_N} \cdot (q_{m_N} + \frac{S}{r.T}p_N.v)
\end{align*}
\]

\[
\begin{bmatrix}
q_{mA} \\
q_{mT}
\end{bmatrix} = \Lambda(y). \begin{bmatrix}
q_{mP} \\
q_{mN}
\end{bmatrix}
\]

\[
F_{pneu} = S(P_P - P_N) = S \Delta p
\]

\[
P_T = \frac{P_N + P_P}{2}
\]

\[
\frac{dp_T}{dt} = -\frac{k.S.v}{2} \cdot \left(\frac{p_P}{V_P} - \frac{p_N}{V_N} \right) + \frac{k.r.T}{2.V_0} \cdot q_{mT}
\]

\[
\frac{d\Delta p}{dt} = -k.S.v \cdot \left(\frac{p_P}{V_P} + \frac{p_N}{V_N} \right) + \frac{k.r.T}{V_0} \cdot q_{mA}
\]
The AT transform (2/2)

- Make the really interesting variables appear in the equations

\[
\begin{align*}
\frac{dy}{dt} &= v \\
\frac{dv}{dt} &= -b \cdot v - F_{\text{sec}}(v) + \frac{F_{\text{pneu}}}{M} \\
\frac{dF_{\text{pneu}}}{dt} &= \frac{A_1 \cdot v \cdot y \cdot F_{\text{pneu}} - A_2 \cdot v \cdot p_T}{V_P \cdot V_N} + B_1 q_m A \\
\frac{dp_T}{dt} &= -\frac{A_3 \cdot v \cdot F_{\text{pneu}} + A_4 \cdot v \cdot y \cdot p_T}{V_P \cdot V_N} + B_2 q_m T
\end{align*}
\]

Decoupling Force generation from Pressurization
The AT transform (2/2)

- Make the really interesting variables appear in the equations

\[
\begin{align*}
\frac{dy}{dt} &= v \\
\frac{dv}{dt} &= \frac{-b.v - F_{sec}(v) + F_{pneu}}{M} \\
\frac{dF_{pneu}}{dt} &= \frac{A_1.v.y.F_{pneu} - A_2.v.p_T}{V_P.V_N} + B_1 q_{mA} \\
\frac{dp_T}{dt} &= \frac{-A_3.v.F_{pneu} + A_4.v.y.p_T}{V_P.V_N} + B_2 q_{mT}
\end{align*}
\]

- \(F_{pneu} = S.(p_P - p_N) \)
- Speed
- Displacement
- Active flow
- Pressurization flow

\(P_T \sim \text{Actuator Stiffness} \)
Experimental validation

- Open-loop: variation on q_{mT}

$$\frac{dp_T}{dt} = -\frac{k.S.v}{2} \left(\frac{p_P}{V_P} - \frac{p_N}{V_N} \right) + \frac{k.r.T}{2.V_0} q_{mT}$$

$\Delta P = 0$

$\frac{d\Delta p}{dt} = -k.S.v \left(\frac{p_P}{V_P} + \frac{p_N}{V_N} \right) + \frac{k.r.T}{V_0} q_{mA}$

Variation of 4 bars

Variation of 0.7 bars
Experimental validation

- Open-loop: variation on q_{mA}

$$\frac{dp_T}{dt} = -\frac{k.S.v}{2} \left(\frac{p_P}{V_P} - \frac{p_N}{V_N} \right) + \frac{k.r.T}{2.V_0} q_{mT}$$

Virtual flow rates [g/s]

$q_{mT} = 0$

q_{mA}

$$\frac{d\Delta p}{dt} = -k.S.v \left(\frac{p_P}{V_P} + \frac{p_N}{V_N} \right) + \frac{k.r.T}{V_0} q_{mA}$$

Variation < 0.05 bar

Variation max of 0.8 bars
AT Transform vs. Park Transform

AT Transform
- change of variables for control purpose:
 \[
 \begin{bmatrix}
 qm_A \\
 qm_T
 \end{bmatrix} = \Lambda(y) \cdot \begin{bmatrix}
 qm_P \\
 qm_N
 \end{bmatrix}
 \]
- original flows of power modulator change in:
 - **virtual active flow** \(qm_A \)
 - **virtual presurization flow** \(qm_T \)

Park Transform
- change of variables for control purpose:
 \[
 \begin{bmatrix}
 V_d \\
 V_q
 \end{bmatrix} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix}
 \cos(\theta) & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\
 -\sin(\theta) & -\sin\left(\theta - \frac{2\pi}{3}\right) & -\sin\left(\theta + \frac{2\pi}{3}\right)
 \end{bmatrix} \cdot \begin{bmatrix}
 V_a \\
 V_b \\
 V_c
 \end{bmatrix}
 \]
- original voltages of power modulator change in:
 - **virtual voltage** \(V_d \)
 - **virtual voltage** \(V_q \)

Displacement and force generation
- **virtual active flow** \(qm_A \)
- **virtual voltage** \(V_d \)

Torque control
- **virtual voltage** \(V_q \)

Mean pressure control
- **virtual presurization flow** \(qm_T \)

Magnetic flux control
- **Actuator stiffness**
Applications of the AT Transform

- Trajectory control ($Y-P_T$ control)
- Energy saving ($Y-P_{Topti}$ control)
- Displacement / Stiffness ($Y-K$ control)
- Position observer (at 0 speed)
- Mono-distributor
Application of the AT Transform

- **Active flow**

 - \(q_{mA} \)

 - Pressure difference: \(F_{pneu} = S(p_P - p_N) \)

 - Speed: \(\int \)

 - Displacement: \(\int \)

- **Pressurization flow**

 - \(q_{mT} \)

 - Pressurization control: (Y-P\(_T\) control)

 - Energy saving: (Y-P\(_{Topti}\) control)

 - Stiffness: (Y-K control)

 - Position observer: (at 0 speed)

 - Mono-distributor
Trajectory control (Y-P_T control)

Control synthesis: Backstepping

Same results to what was achieved with other control techniques
Energy saving (Y-P_{Topti} control)

Control synthesis:
- q_{mA} is imposed (y trajectory)
- minimize

\[C(t) = |q_{mP}(t)| + |q_{mN}(t)| \]

with

\[q_{mA} = V_0 \cdot \left(\frac{q_{mP}}{V_P} - \frac{q_{mN}}{V_N} \right) \]

If V_N smaller than V_P, less flow is required to produce q_{mA} if q_{mN} is used
If V_P smaller than V_N, less flow is required to produce q_{mA} if q_{mP} is used

\[
\begin{aligned}
q_{mP} &= 0 ; \ q_{mN} = -\frac{V_N}{V_0} \cdot q_{mA} \text{ if } y > 0, \\
q_{mP} &= \frac{V_P}{V_0} \cdot q_{mA} ; \ q_{mN} = 0 \text{ if } y < 0, \\
q_{mP} &= -q_{mN} = \frac{q_{mA}}{2} \text{ if } y = 0
\end{aligned}
\]

as

\[q_{mT} = V_0 \cdot \left(\frac{q_{mP}}{V_P} + \frac{q_{mN}}{V_N} \right) \]

Optimal control is obtained for:

\[q_{mT} = -q_{mA} \cdot sgn(y) \]
Stiffness control:
- reject or not disturbances in open-loop (do not required fast closed loop)
- variable compliance

Control synthesis:
- \(q_{mA} \) is imposed \((y\) trajectory\)
- Actuator stiffness
\[
K_{pneu} = \left(\frac{pP}{V_P(y)} + \frac{pN}{V_N(y)} \right) . k . S^2
\]

\[
\begin{align*}
\frac{dy}{dt} &= v \\
\frac{dv}{dt} &= -b.v - F_{sec}(v) + F_{pneu} \\
\frac{dF_{pneu}}{dt} &= -K_{pneu}v + B_1 . q_{mA} \\
\frac{dK_{pneu}}{dt} &= \frac{A_5 . K_{pneu} . y . v - A_6 . F_{pneu} . v - B_4 . y . q_{mA} + B_5 . q_{mT}}{V_N(y) . V_P(y)}
\end{align*}
\]

natural behavior of the actuator to come back to its equilibrium point
Stiffness (Y-K control)

- **Control synthesis : Backstepping**

- Close loop stiffness

- **Desired** K_{pneu}
 - $K_{pneu} = 1.5 \times 10^5$ N/m
 - $K_{pneu} = 2.5 \times 10^5$ N/m
 - $K_{pneu} = 3.5 \times 10^5$ N/m

- **Measured** K_{pneu}

- **Displacement** y

- **Load** [N]

- **Virtual flow rates** [g/s]
 - $K_{pneu} = 1.5 \times 10^5$ N/m
 - $K_{pneu} = 2.5 \times 10^5$ N/m
 - $K_{pneu} = 3.5 \times 10^5$ N/m

- Static error decreasing with K_{pneu} at impact

FPNI 2016, 26-28 oct. 2016, Florianopolis, Brazil
Position observer at standstill (v=0):

\[
\begin{align*}
\frac{dy}{dt} &= 0 \\
\frac{dv}{dt} &= -F_{\text{sec}}(v = 0) + F_{\text{pneu}} \\
\frac{dF_{\text{pneu}}}{dt} &= B_1 q_{mA} \\
\frac{dp_T}{dt} &= B_2 q_{mT}
\end{align*}
\]

- \(y, q_{mA}, q_{mT} \) not known

From pressure sensors only:

- \(F_{\text{pneu}} \) and \(P_T \) can be calculated,
- the full state can be obtained by differentiation:

Procedure

- change slightly \(q_{mT} \) with \(q_{mA} = 0 \)

theoretically \(F_{\text{pneu}} \) do not change (or < dry friction)

the piston do not move (v=0)
Observer synthesis: Sliding mode

- 5 Hz Sinusoidal trajectory on P_T

- Force F_{pneu} measured vs time [s]
- Displacement y vs time [s]
- Derivative of F_{pneu} vs time [s]

Estimated position y

Real position y_m

FPNI 2016, 26-28 oct. 2016, Florianopolis, Brazil
Conclusion

- Active flow
 - $q_m A$
 - Pressure difference
 \[F_{pneu} = S(p_P - p_N) \]
 - \(\int \) Speed
 - \(\int \) Displacement

- Pressurization flow
 - $q_m T$
 - Pressurization control
 (Y-P_T control)
 - Energy saving
 (Y-P_{Topti} control)
 - Stiffness
 (Y-K control)
 - Position observer
 (at standstill)
 - Mono-distributor

What else?
Thanks a lot for your kind attention...

References:
