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Context & problematics

Modeling and control of Fluid Power systems is usually

considered as a difficult task :

o multiphysic : mechanics, fluid dynamics, 

thermodynamics, electrical eng., …

o highly non linear behavior
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more difficult to control than electrical

drives  ?

NO
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Differences electric and fluid power drives (1/3)

 Electric drives
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Electric 

Power

angular position

Load

desired

command

o lot of sensors (current, voltage)

o complex control algorithm embedded

(large computation capacity)

o but everything is included !!!

o high reflected inertia

o complex friction phenomena

o can be considered part of the 

load (disturbance)

The whole package is on-the-shelves !!!

User friendly

High bandwidth Low bandwidth
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Differences electric and fluid power drives (2/3)

 Hydraulic drives
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Hydraulic

Power
Load

command

o ~ no sensor (mech/elec feedback)

o each design is different

o safety component have to be added

o low inertia

o nearly a integrator

Help yourself !!!!

Not user friendly

Low bandwidth High bandwidth
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Differences electric and fluid power drives (2/3)

 Other architectures of hydraulic drives
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Low bandwidth High bandwidth

LoadMechanic

Power

command

High bandwidth

Electric 

Power

angular position
desired

command

Load

Low bandwidthHigh bandwidth

Not user friendly
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Differences electric and fluid power drives (3/3)

 Pneumatic drives
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High bandwidth Low bandwidth

o ~ no sensor (mech/elec feedback)

o low efficiency

o each design is different

o safety component to be added

o low inertia

o low pressure dynamic

Help yourself !!!!

Not user friendly

Pneumatic

Power
Load

command
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Why electrical drive are so user-friendly ?
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User-friendly control
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Servo/Prop. Hydraulic Act.

EHA/ displacement pump

EHA/ variable speed

Electric MA

Servo Pneumatic Act.

The intelligence 

is in the box

Plug & Play

Nearly no computation 

capacity embedded

Not Plug & Play
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How to make the control easier ?

 The physical variables are not always the best for control 

purposes :

o On mechanical side

o On fluid side (pneumatic)
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Speed

 

Displacement

 

2 commands :  
𝑞𝑚𝑃 𝑢𝑃,𝑃𝑃

𝑞𝑚𝑁 𝑢𝑁,𝑃𝑁

 
𝑢𝑁 = 𝜓−1 𝑞𝑚𝑁, 𝑃𝑁
𝑢𝑃 = 𝜓−1 𝑞𝑚𝑃, 𝑃𝑝

𝑞𝑚𝑁

𝑃𝑁

inversion
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The AT transform (1/2)

 2 different phenomena

o The differential pressurization :

o The symmetric pressurization :

 Let us consider the following coordinate transformation:
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do not modify the force

Force

with (*)

 
𝑞𝑚𝑃

𝑞𝑚𝑁
 
𝑞𝑚𝐴 = active flow
𝑞𝑚𝑇 = pressurization flow

* Note : this transformation can easily be

extended to non-symmetric cylinder
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The AT transform (2/2)

Make the really interesting variables appear in the 

equations
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𝐹𝑝𝑛𝑒𝑢=S. 𝑃𝑃 − 𝑃𝑁 = S.Δ𝑝

𝑃𝑇 =
𝑃𝑁 + 𝑃𝑃

2
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The AT transform (2/2)

Make the really interesting variables appear in the 

equations
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Decoupling

Force 

generation

from

Pressurization
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The AT transform (2/2)

Make the really interesting variables appear in the 

equations
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Speed

 

Displacement

 

PT ~ Actuator Stiffness

Active flow

Pressurization flow
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Experimental validation

 Open-loop : variation on 
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Experimental validation

 Open-loop : variation on 
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AT Transform vs. Park Transform

 AT Transform

o change of variables for 

control purpose:

o original flows of power 

modulator change in : 

 virtual active flow qmA

 virtual presurization flow qmT
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 Park Transform

o change of variables for 

control purpose:

o original voltages of power 

modulator change in : 

 virtual voltage Vd

 virtual voltage Vq

Displacement and force generation

Force control Torque control

Actuator stiffness

Mean pressure control Magnetic flux control
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Applications of the AT Transform
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• Trajectory control (Y-PT control)

• Energy saving (Y-PTopti control)

• Displacement / Stiffness (Y-K control)

• Position oberver (at 0 speed)

• Mono-distributor
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Application of the AT Transform

 Active flow
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 Pressurization flow

𝑞𝑚𝐴 𝑞𝑚𝑇

Speed

 

Displacement

 

Pressure difference

Pressurization

control 

(Y-PT control)

Energy saving

(Y-PTopti control)

Stiffness

(Y-K control)

Position oberver

(at 0 speed)

Mono-distributor
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Trajectory control (Y-PT control)

 Control synthesis : Backstepping
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Same results to what was

achieved with other control 

techniques
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Energy saving (Y-PTopti control)

 Control synthesis : 

o qmA is imposed (y trajectory)

o minimize
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if

if

if

𝑞𝑚𝑇 = 𝑉0.
𝑞𝑚𝑃

𝑉𝑃
+
𝑞𝑚𝑁

𝑉𝑁
as

with 𝑞𝑚𝐴 = 𝑉0.
𝑞𝑚𝑃

𝑉𝑃
−
𝑞𝑚𝑁

𝑉𝑁

If VN smaller than VP, less flow is required to produce qmA if qmN is used

If VP smaller than VN, less flow is required to produce qmA if qmP is used

Optimal control is

obtained for :
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Stiffness (Y-K control)

 Stiffness control:

o reject or not disturbances in open-loop (do not required fast

closed loop)

o variable compliance

 Control synthesis : 

o qmA is imposed (y trajectory)

o Actuator stiffness
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natural behavior of the 

actuator to come back to its

equilibrium point



21

Time [s]

S
ti

ff
n

es
s

[N
/m

]

desired Kpneu

measured Kpneu

Close loop stiffness

• Stiffness (Y-K control)

 Control synthesis : Backstepping
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Position observer at standstill

 Position observer at standstill (v=0) :

 From pressure sensors only :
 Fpneu and PT can be calculated, 

 the full state can be obtained by differentiation:

 Procedure

o change slightly qmT with qmA = 0
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y, qmA, qmT

not known

estimated

system inputs

position 

estimation error

theoritically Fpneu do not change (or < dry friction)

the piston do not move (v=0)
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 Observer synthesis : Sliding mode

o 5 Hz Sinusoisal trajectory on PT

Time [s]

Time [s]
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Conclusion

 Active flow
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 Pressurization flow

𝑞𝑚𝐴 𝑞𝑚𝑇

Speed

 

Displacement

 

Pressure difference

Pressurization

control 

(Y-PT control)

Energy saving

(Y-PTopti control)

Stiffness

(Y-K control)

Position oberver

(at standstill)

Mono-distributor

What else ?
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Thanks a lot for your kind attention…
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