

A Park - like transform for fluid power systems : application to pneumatic stiffness control

Prof. Eric Bideaux, INSA Lyon, Ampère Lab, France

Lvon 1

1

Context & problematics

Modeling and control of Fluid Power systems is usually considered as a difficult task :

- multiphysic : mechanics, fluid dynamics, thermodynamics, electrical eng., ...
- highly non linear behavior

Ampere

Lvon 1

Why electrical drive are so user-friendly ?

How to make the control easier ?

The physical variables are not always the best for control purposes :

Ampere

On mechanical side

Displacement

Lvon 1

The AT transform (1/2)

2 different phenomena

- The differential pressurization
- The symmetric pressurization :

on:
$$\frac{d\Delta_p}{dt} = \frac{dp_P}{dt} - \frac{dp_N}{dt}$$
 Force
on: $\frac{dp_T}{dt} = \frac{1}{2} \cdot \left(\frac{dp_P}{dt} + \frac{dp_N}{dt}\right)$
do not modify the force

Let us consider the following coordinate transformation:

The AT transform (2/2)

Impere

Make the really interesting variables appear in the equations

The AT transform (2/2)

ശ്ര Lyon 1

Ampere

Make the really interesting variables appear in the equations

$$\begin{pmatrix}
\frac{dy}{dt} = v \\
\frac{dv}{dt} = \frac{-b.v - F_{sec}(v) + F_{pneu}}{M} \\
\frac{dF_{pneu}}{dt} = \frac{A_{1}.v.y.F_{pneu} - A_{2}.v.p_{T}}{V_{P}.V_{N}} + B_{1}(q_{mA}) \\
\frac{dp_{T}}{dt} = \frac{-A_{3}.v.F_{pneu} + A_{4}.v.y.p_{T}}{V_{P}.V_{N}} + B_{2}(q_{mT})$$
Decoupling
Force
generation
from
Pressurization

The AT transform (2/2)

Ampere

Make the really interesting variables appear in the equations

AT Transform vs. Park Transform

□ AT Transform

 change of variables for control purpose:

$$\left[egin{array}{c} q_{mA} \ q_{mT} \end{array}
ight] = \Lambda(y). \left[egin{array}{c} q_{mP} \ q_{mN} \end{array}
ight] \qquad \left[egin{array}{c} V_d \ V_q \end{array}
ight] = \sqrt{rac{2}{3}}.$$

- original flows of power modulator change in :
 - ✓ virtual active flow qmA
 - Force control

Park Transform

• change of variables for control purpose:

$$\cos\left(\theta\right) \quad \cos\left(\theta - \frac{2.\pi}{3}\right) \quad \cos\left(\theta + \frac{2.\pi}{3}\right) \quad \left| \begin{array}{c} V_a \\ V_b \end{array} \right|$$

$$-\sin(\theta) - \sin\left(\theta - \frac{2\pi}{3}\right) - \sin\left(\theta + \frac{2\pi}{3}\right) \right| \left| V_c \right|$$

 original voltages of power modulator change in :

✓ *virtual voltage Vd* Torque control

Displacement and force generation

✓ virtual presurization flow qmT
 Mean pressure control

virtual voltage Vq
 Magnetic flux control

Actuator stiffness

Laboratoire Ampère

Unité Mixte de Recherche CNRS

Génie Électrique, Électromagnétisme, Automatique, Microbiologie Environnementale et Applications

Applications of the AT Transform

- Trajectory control (Y-P_T control)
- Energy saving (Y-P_{Topti} control)
- Displacement / Stiffness (Y-K control)
- Position observer (at 0 speed)
- Mono-distributor

Trajectory control (Y-P_T control)

□ Control synthesis : Backstepping

Ampere

Energy saving (Y-P_{Topti} control)

Control synthesis :

- \circ **q**_{mA} is imposed (y trajectory)
- minimize $C(t) = |q_{mP}(t)| + |q_{mN}(t)|$

Lvon 1

with
$$q_{mA} = V_0 \cdot \left(\frac{q_{mP}}{V_P} - \frac{q_{mN}}{V_N}\right)$$

If V_N smaller than V_P , less flow is required to produce q_{mA} if q_{mN} is used If V_P smaller than V_N , less flow is required to produce q_{mA} if q_{mP} is used

$$\begin{array}{c}
 \end{array} \left\{ \begin{array}{l}
 q_{mP} = 0 \; ; \; q_{mN} = -\frac{V_N}{V_0} \cdot q_{mA} \; \text{if} \; y > 0, \\
 q_{mP} = \frac{V_P}{V_0} \cdot q_{mA} \; ; \; q_{mN} = 0 \; \text{if} \; y < 0, \\
 q_{mP} = -q_{mN} = \frac{q_{mA}}{2} \; \text{if} \; y = 0
\end{array} \right. \quad \begin{array}{c}
 \end{array} \qquad \begin{array}{c}
 \text{obtained for :} \\
 q_{mT} = -q_{mA} \cdot sgn(y)
\end{array}$$

Stiffness control:

mpere

- reject or not disturbances in open-loop (do not required fast closed loop)
- variable compliance

Control synthesis :

- \circ q_{mA} is imposed (y trajectory)
- \circ Actuator stiffness K_{pneu} =

$$= \left(\frac{p_P}{V_P(y)} + \frac{p_N}{V_N(y)}\right).k.S^2$$

Stiffness (Y-K control)

Control synthesis : Backstepping

Ampere

Position observer at standstill

ரு Lyon 1

mpere

□ Position observer at standstill (v=0) : position $\frac{dy}{dt} = 0$ estimation error $\frac{dy}{dt} = 0$ $\frac{dv}{dt} = 0$ estimated $\frac{dv}{dt} = \frac{-F_{sec}(v=0) + F_{pneu}}{M}$ system inputs $\frac{dF_{pneu}}{dt} = B_1 \cdot \left[q_{\hat{m}A} + \overline{y} \cdot \frac{S \cdot V_0 \cdot q_{\hat{m}T} - S^2 \cdot y \cdot q_{\hat{m}A}}{V_P \cdot V_N}\right]$ $\frac{dp_T}{dt} = B_2 \cdot \left[q_{\hat{m}T} + \overline{y} \cdot \frac{S \cdot V_0 \cdot q_{\hat{m}A} - S^2 \cdot y \cdot q_{\hat{m}T}}{V_P \cdot V_N}\right]$ $\begin{cases} dt = 0 \\ \frac{dt}{dt} = \frac{-F_{sec}(v=0) + F_{pneu}}{M} & y, q_{mA}, q_{mT} \\ not \ known \\ \frac{dF_{pneu}}{dt} = B_{1}.q_{mA} & & & \\ \frac{dp_T}{dt} = B_{2}.q_{mT} & & & \\ \end{cases}$ From pressure sensors only : p_T $y_m = \begin{vmatrix} p_T \\ \frac{dF_{pneu}}{dt} \\ \frac{dp_T}{dt} \end{vmatrix}$ \checkmark F_{pneu} and P_T can be calculated, \checkmark the full state can be obtained by differentiation: **Procedure** • change slightly q_{mT} with $q_{mA} = 0$ theoritically F_{pneu} do not change (or < dry friction) the piston do not move (v=0)

Position observer at standstill

I hanks a lot for your kind attention...

References :

- 1. Frédéric Abry, Xavier Brun, Sylvie Sesmat, Eric Bideaux. Non-linear position control of a pneumatic actuator with closed-loop stiffness and damping tuning, ECC, Jul 2013, Zürich, Switzerland. pp.1089 1094, 2013
- 2. Frédéric Abry, Xavier Brun, Michaël Di Loreto, Sylvie Sesmat, Eric Bideaux. Piston position estimation for an electro-pneumatic actuator at standstill, Control Engineering Practice, Elsevier, 2015, 41 (8), pp.176-185

