DIGITAL SERVOVALVES

The smart approach to electrohydraulic motion control

3rd Workshop on Innovative Engineering for Fluid Power

AGENDA

- Introduction MOOG
- Electrohydraulic motion control
- Modern Automation
- Digital Servovalve
- Applications

Abstract

The integration of powerfull microprocessor based electronics in the servovalves is allowing new and flexible motion control architectures. Smart "automation nodes" coupled with high speed communication are revolucionizing the concept of motion control automation. In this presentation we are going to explore the history and reasons behind the digital valve development, the technology's state-of-the-art and application examples.

AGENDA

- Introduction - MOOG

- Electrohydraulic motion control
- Modern Automation
- Digital Servovalve
- Applications

COMPANY PROFILE

- Established in 1951, by Bill Moog
- Focus in high performance motion control solutions for industrial, military and aerospace applications.
- Sales (FY16) = US\$ 2,6 Billions
- 10.700 employees
- Headquarter: Buffalo, NY

MOOG HEADQUARTERS (Buffalo-NY)

MÕOG

GLOBAL PRESENCE

Asia Pacific Japan Philippines China India Korea Australia Singapore

MOOG

Americas USA Canada Brazil

ER 25-26 - FLORIANÓPOLIS - SC - BRAZIL

MOOG

4 GROUPS

Aircraft Group

primary and secondary flight controls, engine controls

Industrial Group

high performance motion control for industrial applications, test and simulation

Components Group

Slip rings, small motors & actuators, fiber optics interfaces, air cooling solutions, infusion pumps

Space and Defense Group

missiles/ launchers trajectory control, antenas and solar panels positioning, satelites atitude control, infusion pumps

INDUSTRIAL GROUP

MOOG do Brasil Controles Ltda

Plant 1: Rua Prof Campos Oliveira, 338

phone +55 (11) 3572-0400

São Paulo SP

<image>

Plant 2: Rua Agostinho Togneri, 457

www.moog.com.br

MOOG

INDUSTRIAL GROUP - MARKETS

AGENDA

- Introduction to MOOG
- Electrohydraulic motion control
- Modern Automation
- Digital Servovalve
- Applications

SERVOCONTROL

- Closed loop motion control
- Control of: position, velocity, acceleration, force, pressure

• Tecnologies: ELECTROHYDRAULIC, electromechanical, electrohydrostatic

ELECTRO-HYDRAULIC MOTION CONTROL

Elements: pump, valve, hydraulic cylinder.

Power is transmited by the fluid $P = Q \cdot p = (flow x pressure)$

N/O(

e

ELECTRO-HYDRAULIC MOTION CONTROL

ELECTRO-HYDRAULIC MOTION CONTROL SERVOVALVES

MFB = Mechanical Feedback nozzle–flapper pilot

ELECTRO-HYDRAULIC MOTION CONTROL

Analog Servovalve

AGENDA

- Introduction to MOOG

- Electrohydraulic motion control

- Modern Automation
- Digital Servovalve
- Applications

MOOG

AUTOMATION TECHNOLOGY

G

N/O

SCADA = Supervisory Control and Data Acquisition

TRADITIONAL AUTOMATION ARCHITECTURE CENTRALIZED CONTROL

MODERN (FACTORY 4.0) AUTOMATION ARCHITECTURE

Digital Communication + Stand alone Operation + Configuration + Remote Diagnostics

G

MOO

FIELDBUS - Definition by IEC 61158-2

Digital data communications for measurement and control for use in industrial control systems OSI 7 layers model

OPEN PROTOCOL = when used layers are clearly specified, documented and made available to interested users = interoperability & compatibility

Only layers 1, 2 and 7 are specified for FIELDBUSSES!

• IEC (International Electrotechnical Commission) is a worldwide organization for standardization that promotes international co-operation on all questions concerning standardization in the electrical and electronic fields.

OSI (Open Systems Interconnection) defined by ISO Standards

FIELDBUS make your choice! ;>)

BSAP - Bristol Babcock Inc.

DF-1

CC-Link

CIP -Common Industrial Protocol - ODVA

CAN -Controller Area Network - Bosch

CAN open

ControlNet - Allen-Bradley

DeviceNet - Allen-Bradley

Interbus - Phoenix Contact

HART Protocol (run in 4-20mA lines)

Modbus RTU - Schneider

Modbus NFT

Modbus TCP

Modbus Plus

Modbus PEMEX

EGD - GE Fanuc Fieldbus FOUNDATION FINS - Omron GE SRTP - GE Fanuc PLCs Host Link - Omron Mechatrolink - Yaskawa MelsecNet/10 - Mitsubishi Electric Optomux - Opto 22 PieP - Open Fieldbus Protocol Profibus - Siemens **Profibus-DP** Profibus-PA SERCOS Sinec H1 - Siemens SynqNet - Danaher

* Supported by MOOG

FIELDBUS - Ethernet-based, real time communication

EtherCAT - Beckhoff Automation

EtherNet/IP - ODVA

Ethernet Powerlink - B&R

PROFINET - Siemens

SafetyNET p – Pilz GmbH

SERCOS III - Sercos International

TTEthernet -TTTech Computertechnik AG

VARAN - VNO (Varan-bus Nutzerorganisation)

RAPIEnet - Korea

CANopen 1 Mbit/sec

Profibus DP 12 Mbit/sec

EtherCAT, PowerLink, Varan 100 Mbit/sec

POWERLINK

* Supported by MOOG

FIELDBUS +/-

PLUS:

- Direct communication between the PLC (Fieldbus-Master) and actuators/transducers
 - \rightarrow lower cost wiring and smaller electrical cabinet
 - \rightarrow reduced number of discrete I/Os
- Digital command and feedback signals \rightarrow no noise, no loss
- Remote monitoring, parametrization, diagnostics, troubleshooting
- Direct communication between slave devices is possible in some fieldbusses

MINUS:

- Real time communication capability is limited depending on the fieldbus speed and the number of connected devices.
- Devices are more expensive (must have built-in fieldbus interface)
- Implementation requires skilled workforce

AGENDA

- Introduction to MOOG
- Electrohydraulic motion control
- Modern Automation
- Digital Servovalve
- Applications

HISTORY

- **1992:** checking the possibility of controlling a servovalve with digital electronics
- **1995:** industrial controller (eurocard format) installed in a servovalve with analogue spool control, simple CAN interface.
- **1998:** embedded hardware/software, basic CANopen and VDMA standard functionalities, mixed analogue/digital spool position control.
- 2000: DCV (Digital Control Valve): 2 boards design electronics, full CANopen, full VDMA, full digital valve control, MoVaCo (Configuration Software Tool)

Verband Deutscher Maschinen- und Anlagenbau Mechanical Engineering Industry Association

HISTORY

- **2003:** digital pQ valve (pressure + flow control)
- 2005: modular design (3 boards), Profibus, aditional analog and digital inputs, digital RKP pumps
- 2007: ACV (Axis Control Valve): closed loop with external transducers

EtherCAT

- 2009: EtherCAT
- 2011: improved electronics, powerfull microprocessors
- 2012: new configuration software tool (MoVaPuCo), VARAN
- 2014: explosion proof versions, new models
- 2016: PowerLink

A LARGE FAMILY OF DIGITAL VALVES

ΔΙ	ΔRG	FF	ΔΛ/	Ш У	<u>⁄</u>	ΕD		ΤΔΙ		ΔΙ \	/F	S					se.	SHISOR
									_		/	0				Â	VAL NAV	E SURE
Mode	els		RATE	DFLOW	L/MIN AT	10 BAR	(150 PS	5I) AP				STEP RESPONSE (0 to 100% STROK	E) MS	1	otoph	Rec. O	RATED STATED	150 AAU
	12	5	10	20	30	100	200	500	1k	2k	Зk	0 5 10 20 30 4	40 50		0	141	Su	٢
D675								1	000	1500		10	43	•			10	
<u>D945</u>								1	000	1500		30	43	•		•	10	
<u>D674</u>								550 55	0			14	44	•			08	
<u>D944</u>								550 55	0			17	44	•		•	08	
<u>D673</u>							35	350				13 33	_	•			08	
<u>D943</u>							35	350				15 33		•		•	08	
<u>D672</u>					60	90						7		•			07	
D672						15	0 2	250				10	44	•			07	
D942						150	0 ²	250				11	44	•		•	05	
<u>D671</u>			8			68						9		•			05	
D671					30	80						11 28		•			05	
<u>D941</u>			8			80						11 28		•		•	05	
<u>D639</u>				24		40						14			•	•	05	
D637				24		40						14			•		05	
D638	2			16								8			•	•	03	
D636	2			16								8			•		03	
	12	5	10	20	30	100	200	500	1k	2k	Зk	0 5 10 20 30 4	40 50					
			RATE	D FLOW	L/MIN AT	10 BAR	(150 PS	SI) ∆P				STEP RESPONSE						

(0 to 100% STROKE) MS

DCV - DIGITAL CONTROL VALVE Functionality & Interfaces

DCV-Q : Flow Control Analog Command

DCV-pQ : Flow & Pressure Control Analog Command

MOOG

DIGITAL SERVOVALVES - models · -0

DIGITAL SERVOVALVES – Customized Versions

Power on fieldbus

DIGITAL SERVOVALVES – Customized Versions LOAD COMPENSATION

Constant flow despite variable loads

Measurement of supply pressure and both load with integrated pressure transducer module

Higher dynamics and better stability than hydro-mechanical pressure drop compensators

Additional functionality through pressure and flow measurement

NG 10

NG 16

DIGITAL SERVOVALVES - EXPLOSION PROOF Versions

Connectors can be plugged under load

MO0<u>G</u>

MoVaPuCo - Moog Valve and Pump Configuration Software

🏡 📑 🚽 🔎 🛧 🖌 🎬 🎬 😨 🗛	
500kbit/s 6%	+
Inputs >> Controller 《	< Display
External Inputs B L p/Q (closed loop) * V1.4 0.16 V 1 Parameter set # 5 * A X1.7 -15.07 mA H H	Info + Observations + Data Logger 2 - Info -
X5 0.97 V X6 0.96 V X7 0.96 V Internal Inputs	Recording Recording data: Channel 1: Stroke ring demand valu Channel scaling Channel 2: Stroke ring actual value Channel scaling Channel scaling Channel scaling Channel 3: Pilot speel actual value
0.00% 0.00% CANopen 0 @x6040 0 @x6030 0.00% 0x010 0.00% 0x01 0.00% 0x01 0.00% 0x01 0.00% 0x01 0.00% 0x01 0.00% 0x01 0.00%	Image: Second secon
Outputs + Operation mode selection (active: #1 - 01.6 V)	Errors + Fault Configuration + Counter +
Valve and Pump Configuration Software 1.1.1	

User-friendly WINDOWS interface/toll for parameterization, setup, monitoring and troubleshooting

USB-CANopen connection

DIGITAL SERVOVALVES – Special Functionality Trajectory Generator

- Decentralized control topology

- Reduces PLC's CPU load
- Reduces PLC speed requirements
- Replaces real-time communication
- Decreases fieldbus communication traffic
- Can increase systems performance

Command values :

- target position
- max. velocity
- max. acceleration
- max. jerk

DIGITAL SERVOVALVES – Special Functionality Event Handler

- "event" = user defined expressions based in "C" programming syntax
- Used to calculate values and take actions based in internal and external parameters.
- One "event" can enable/disable another "event".
- Multiple actions can be executed in one "event".
- Calculations are processed every milisecond by the EVENT HANDLER.

	Symbol	Description
	1	divide
Event U enabled	*	multiply
	•	subtract / negate
Everk Fondeled	+	add
Event 2 enabled	>>>	shift right
		shift left
	<, <=	smaller, smaller or equal
Event 3 enabled	>, >=	greater, greater or equal
		equal
Event 4 enabled		not equal
	&	bit AND
Event 5 enabled		bit OR
	&&	logical AND
Event 6 enabled		logical OR
	?:	if (?) than (:) else
Event 7 enabled	=	assign
		separate within expression

DIGITAL SERVOVALVES – Special Functionality Event Handler - Examples

prsval>100?ctlmod=4

IF the actual pressure (*prsval*) *IS BIGGER THAN 100 bar*, THEN change to pressure control mode (ctlmod=4)

posval<25?ctlmod=9;evtena[4]=1;evtena[5]=0;</pre>

IF the actual position (posval) IS SMALLER THAN 25 mm,

THEN change to position control mode (ctlmod=9)

AND enable event 4 (set to 1)

AND disable event 5 (set to 0)

DIGITAL VALVE DOES NOT REPLACE THE PLC!

PLC

PROCESS SUPERVISION/ COORDINATION

Logic sequencies execution: test conditions and take actions **Fully programmable** by the user Large number of I/Os Electrical panel operation (controlled environment)

CLOSED LOOP CONTROL

Internal status check

Limited programming through the "Event Handler" **Parametrization** done by the user Limited number of I/Os Field operation (aggressive environment)

AGENDA

- Introduction to MOOG
- Electrohydraulic motion control
- Modern Automation
- Digital Servovalve
- Applications

DIGITAL SERVOVALVES – Intrinsic Advantages

High precision spool position control:

- increased resolution
- no drift
- improved frequency response

repetibility¹ Allows high control loop gain = errors \downarrow Digital Frequency Response 5% @140 bar 3 -180 -135 0 Magnitude [dB] Phase [deg] -90 Analogue -6 -45 -9 90**** 170 100 10 1000 F [Hz]

N / O

C

NIP CONTROL – Paper Calander

MOOG

NIP CONTROL – Paper Calander

Transducer:

• Pressure transducer integrated in the valve

Functionality:

- Precise pressure control implemented by each digital servovalve
- Remote monitoring and diagnostics

Pressure Profile

Advantages:

- Distributed control: PLC just send pressure commands and reads real pressures (no closed loops execution)
- Compact and robust unity, IP65, integrating transducer and loop closure.
- Fieldbus communication simplifies wiring and reduces analogue I/O requirements (30 to 150 points pressure profile, depending on calander size)

DEEP DRAWING PRESS – CUSHION CONTROL

MOOG

DEEP DRAWING PRESS – CUSHION CONTROL

MEDEEP DRAWING PRESS – CUSHION CONTROL

Position control Pressure (cushion) control Transducers: position: encoder Pressure: pressure transducer Functionality: Fieldbus commands/monitoring • High precision flow control (spool) that allows high • performance position and pressure controls Advantages: Fieldbus connection: reduced wiring, less I/O modules, digital command (no noise), remote monitoring (detailed alarms / condition), remote troubleshooting Numbers of strokes / min : 17 Better dynamics, no drift, repeatibility 1.200 KN Max force : Min force 250KN

Moveable mass cushion

METAL FORMING - Multi Stage Bending Press

METAL FORMING - Multi Stage Bending Press

Position & force control using ACV

Transducers:

- position: encoder
- force: 2 x pressure (force is calculated indirectly)

Functionality:

- Trajectory generator
- High precision position control
- Position control to pressure control bumpless transfer
- Pressure (force) limiting

Advantages:

- Distributed control: PLC coordinates the process, does not close hard real time loops
- Modularity: axis can be added easily, allowing different machine configurations

WIND TURBINE - PITCH CONTROL

MOOG

WIND TURBINE - PITCH CONTROL

The PITCH CONTROL adjusts the turbine blades angle to:

- 1. STOP the turbine in case of emergencies/failures
- 2. MAXIMIZE energy conversion in a large wind speed range

Power \approx pitch angle \cdot (wind speed)³

Functionality

- 3 blades follows the same position command (syncronized movement)
- the pitch control system is assembled in the hub and rotates with the turbine

WIND TURBINE - PITCH CONTROL

Advantages

- Safer, individual position closed loop is implemented by each Axis Control Valve.
- Reliable data transmission through the slip ring (fieldbus communication = few wires)
- Remote system monitoring: very important because access to the hub is difficult and the hub rotates while turbine is in operation

THANK YOU!

For additional info, please contact: Mario Valdo mvaldo@moog.com phone: +55 (11) 3572-0404

MOOG do Brasil Controles Ltda Rua Prof Campos de Oliveira, 338 04675-100 São Paulo – SP Phone :+55 (11) 3572-0400 info.brazil@moog.com www.moog.com.br

