

Individualized Structures in Fluid Power Systems

October 28, 2016

9th FPNI PhD Symposium on Fluid Power, Florianopolis

From belt transmission

to distributed drives / local intelligence / integrated safety / high level of communication

Central belt transmission - Power transm.

Distributed drives – Power & Information transm.

From todays central hydraulics

to individual smart drives / local intelligence / integrated safety / high level of communication

Individualization levels of displacement control systems

- common motor-pump-unit applications with strictly sequential working cycles (no parallel operation)
- common motor but individual variable displacement pumps for each actuator beneficial with other efficient drive technologies, (power split transmissions) recirculation possible / individual pressure levels
- individual motor-pump-unit for every single actuator highest level of individualization and flexibility individual pressure and speed levels / high component effort

Potentials of individualized displacement controlled systems

Structural variants of displacement controlled systems

- depending on application, cycle, potentials
- depending on energy source / domain
- depending on investment acceptance

Results

- proof of static and dynamic performance
- similar good efficiency as commercially available electromechanical compact drive

Challenges

- thermo-energetic status
- passive cooling
- heat exchange

Structure variants and possible solutions for compact drives

- operation cycle
- installed power
- fluid life time

Results

- Temperature field visualization via thermo-camera
- Simulation based on thermofluidic model
- Measurement confirms simulation
- Opportunities for increased heat transfer????

Oil and surface temperatures

Thermo-fluidic model

Results

- 22% reduced temperature level
- thermo-energetic behavior can be simulated for known load cycles and system losses

Model predictive optimization

Introduction • Individualized displacement control • Individualized valve control • Outlook

Speed variable drive and variable pump control

Decoupling of drive speed and volume flow control ٠

Energy Efficiency min $\int P_{Loss,t} dt$

Dynamic loss models of motor and pump

- Additional degree of freedom ٠
- Intelligent control strategy through model predictive optimization ٠

Simultaneous use of both actuators

Process Dynamics $\frac{dQ}{dt} = n \cdot V_0 \cdot \frac{d\alpha}{dt} + \frac{dn}{dt} \cdot V_0 \cdot \alpha$

Optimization aspects on system level

b) Outlet temperature simulation and measurement

Temperature development, simulation and measurement

Optimization aspects on system level

Decentralization of Unit Supply

- System design for key operating conditions according to the specific demands and loads
- Determination of optimal, process-current control strategies for temperature control

Individualization levels of independent metering control systems

- differentiation regarding type and arrangement of the used valve technology
- common metering edges individual spool design only
- separate metering of in- and outflow of the hydraulic working ports
- topology of individual valve groups opens up for differential modes of operation (several free flow paths)

Diversity of valve technology

Potentials of independent metering control systems

Variety of system and control architecture

- variety of application specific component layout or valve architecture
- system structure combined with control/sensor architecture

Feed-forward control

Closed-loop SISO

control

Cardboard packaging press - potentials

Introduction • Individualized displacement control • Individualized valve control • Outlook

9th FPNI PhD Symposium on Fluid Power, Florianopolis-SC, Brazil

Machine structure

MIMO Flatness based trajectory control strategy:

- Smooth mode switching
- max. efficiency

Duty cycle and measurement results

with MIMO flatness based control

Independent metering for power assisted steering systems

- electrical drives offer very often integrated safety functions
- leads to an easy system integration for OEM
- benefits of IM structures in steering systems:
 - driver assisted steering
 - high safety level due to extended control intervention

Independent metering for power assisted steering systems - Safety

• a steering system with independent meter-in and meter-out valves

possibility to compensate single failures and reduce adverse effects of faulty states

Safety and availability

behaviour in case of failure:

Introduction • Individualized displacement control • Individualized valve control • Outlook

Challenges in developing future pumps for individual displacement drives

Challenges and requirements in developing future valves for individual independent metering architecture

9th FPNI PhD Symposium on Fluid Power, Florianopolis-SC, Brazil

Fluidtechnik TU Dresden

Introduction • Individualized displacement control • Individualized valve control • Outlook

Contact:

Professor Dr.-Ing. Jürgen Weber mailbox@ifd.mw.tu-dresden.de

Institute of Fluid Power

Helmholtzstraße 7a 01069 Dresden

Head:

Prof. Dr.-Ing. J. Weber

Thank you for your attention!

Sources:

(a) thumbs.dreamstime.com/z/g-g-g-icons-blue-grey-symbols-buttons-white-background-threedimensional-rendering-50191122.jpg

(b) www.funkschau.de/mobile-solutions/artikel/127744/

(c) www.digitaltrends.com/computing/best-internet-speed-tests/

(d) accuquest.com/why-accuquest/accunews/hearing-aid-technology/the-future-of-hearing-loss-therapy-may-rely-on-high-resolution-images#prettyPhoto

(e) bernetblog.ch/wp-content/uploads/2008/04/stoppuhr.png

(f) www.grupohagakure.com.br/portfolio-view/monitoramento-de-cargas-e-valores/

(g) www.barrakuda.at/linkbuilding-die-externe-staerkung-ihrer-website/

(h) www.telegraph.co.uk/news/picturegalleries/howaboutthat/4863438/The-amazing-crayon-art-of-Christian-Faur.html?image=10